Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Oct 18 2016 14:57:08
%S 0,0,6,32,200,384,1470,2688,5400,9600,18150,27168,44616,65856,90150,
%T 140800,184960,274320,331398,474400,569184,774400,896126,1366656,
%U 1390000,1881984,2204982,2899232,2967048,4545600,4180350,5904384
%N Number of collinear triples of distinct points in Zn x Zn with no two on the same "horizontal" or "vertical" line.
%C Number of 3x3 matrices [1, x, u; 1, y, v; 1, z, w] over Z_n with zero determinant, where elements of the triples x,y,z and u,v,w are distinct.
%H G. C. Greubel, <a href="/A146557/b146557.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = n * Sum_{i,j,k} ( n * gcd(i,j,k) - gcd(i,n) - gcd(j,n) - gcd(k,n) + 2 ) * k, where the sum is taken over all triples of positive integers i,j,k with i+j+k=n.
%t f[n_] := n*Sum[ Sum[ (n - i - j)*( n*GCD[i, j, n - i - j] - GCD[i, n] - GCD[j, n] - GCD[i + j, n] + 2 ) , {j, 1, n - i}] , {i, 1, n}]; Table[f[n], {n,1,25}] (* _G. C. Greubel_, Oct 18 2016 *)
%o (PARI) { a(n) = n * sum(i=1,n, sum(j=1,n-i, (n-i-j) * (n*gcd([i,j,n-i-j]) - gcd(i,n) - gcd(j,n) - gcd(i+j,n) + 2) )) }
%K nonn
%O 1,3
%A _Max Alekseyev_, Oct 31 2008