Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Feb 21 2023 07:31:43
%S 1,5,10,20,40,80,160,320,640,1280,2560,5120,10240,20480,40960,81920,
%T 163840,327680,655360,1310720,2621440,5242880,10485760,20971520,
%U 41943040,83886080,167772160,335544320,671088640,1342177280,2684354560,5368709120,10737418240
%N Binomial transform of A010685.
%C Linked to A029609 by a Catalan transform.
%C Hankel transform is (1, -15, 0, 0, 0, 0, 0, 0, 0, ...).
%H G. C. Greubel, <a href="/A146523/b146523.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).
%F a(n) = 5*2^(n-1) for n >= 1, a(0) = 1.
%F a(n) = Sum_{k=0..n} A109466(n,k)*A029609(k).
%F a(n) = A084215(n+1) = A020714(n-1), n > 0. - _R. J. Mathar_, Nov 02 2008
%F G.f.: (1 + 3*x)/(1 - 2*x). - _Vladimir Joseph Stephan Orlovsky_, Jun 21 2011
%F G.f.: G(0), where G(k)= 1 + 3*x/(1 - 2*x/(2*x + 3*x/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 03 2013
%F E.g.f.: (5*exp(2*x) - 3)/2. - _Stefano Spezia_, Feb 20 2023
%t CoefficientList[Series[(1+3x)/(1-2x), {x,0,50}], x] (* _Vladimir Joseph Stephan Orlovsky_, Jun 21 2011 *)
%t Join[{1}, 5*2^(Range[40] -1)] (* _G. C. Greubel_, Nov 23 2021 *)
%o (PARI) a(n)=if(n,5<<(n-1),1) \\ _Charles R Greathouse IV_, Jan 17 2012
%o (Sage) [1]+[5*2^(n-1) for n in (1..50)] # _G. C. Greubel_, Nov 23 2021
%Y Cf. A010685, A020714, A029609, A084215, A109466.
%K nonn,easy
%O 0,2
%A _Philippe Deléham_, Oct 30 2008