OFFSET
0,1
COMMENTS
Product of Artin's constant A005596 and the equivalent almost-prime products.
LINKS
M. Chamberland, A. Straub, On gamma constants and infinite products, arXiv:1309.3455
R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], first line Table 3.
FORMULA
The logarithm is -Sum_{s>=2} Sum_{j=1..floor(s/(1+r))} binomial(s-r*j-1, j-1)*(1-Zeta(s))/j at r=1.
s*Sum_{j=1..floor(s/2)} binomial(s-j-1, j-1)/j = A001610(s-1).
Equals 1/Product_{k=1..2} Gamma(1-x_k) = -sin(A094886)/A000796, where x_k are the 2 roots of the polynomial x*(x+1)-1. [R. J. Mathar, Feb 20 2009]
EXAMPLE
0.2966751347435910345... = (1 - 1/2)*(1 - 1/6)*(1 - 1/12)*(1 - 1/20)*...
MAPLE
phi := (1+sqrt(5))/2; evalf(-sin(Pi*phi)/Pi) ; # R. J. Mathar, Feb 20 2009
MATHEMATICA
RealDigits[-Cos[Pi*Sqrt[5]/2]/Pi, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Feb 13 2009
EXTENSIONS
More terms from Jean-François Alcover, Feb 11 2013
STATUS
approved