Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 30 2020 08:42:34
%S 193,281,1861,1933,2089,2141,2437,2741,2837,3037,3121,3413,4001,4637,
%T 4877,5821,6653,7673,8117,10069,10273,10457,11197,11549,11821,12409,
%U 13037,14653,15061,15077,18661,20549,22921,23117,24169,25621,28837,35597,35869,36389,38569
%N Primes p such that continued fraction of (1 + sqrt(p))/2 has period 15: primes in A146338.
%H Amiram Eldar, <a href="/A146360/b146360.txt">Table of n, a(n) for n = 1..2000</a>
%p A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146360 := proc(n) RETURN(isprime(n) and A146326(n) = 15) ; end: for n from 2 to 30000 do if isA146360(n) then printf("%d,\n",n) ; fi; od: # _R. J. Mathar_, Sep 06 2009
%t Select[Prime[Range[1500]],Length[ContinuedFraction[(Sqrt[#]+1)/2][[2]]] == 15&] (* _Harvey P. Dale_, Aug 16 2014 *)
%Y Cf. A000290, A050950-A050969, A078370, A146326-A146345, A146348-A146360.
%K nonn
%O 1,1
%A _Artur Jasinski_, Oct 30 2008
%E 8539 removed by _R. J. Mathar_, Sep 06 2009
%E More terms from _Amiram Eldar_, Mar 30 2020