login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146339
Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 16.
3
172, 191, 217, 232, 249, 310, 311, 329, 343, 344, 355, 369, 391, 393, 416, 428, 431, 446, 496, 513, 520, 524, 536, 537, 550, 559, 589, 647, 655, 679, 682, 686, 700, 704, 748, 760, 768, 775, 802, 816, 848, 851, 872, 927, 995, 996, 1036, 1058, 1079, 1080, 1120, 1136
OFFSET
1,1
COMMENTS
For primes in this sequence see A146361.
LINKS
EXAMPLE
a(1) = 191 because continued fraction of (1+sqrt(191))/2 = 7, 2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26... has period (2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13) length 16.
MAPLE
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic', 'quotients') ; nops(%[2]) ; else 0 ; fi; end:
isA146339 := proc(n) RETURN(A146326(n) = 16) ; end:
for n from 2 to 1000 do if isA146339(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Sep 06 2009
MATHEMATICA
Select[Range[1000], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 16 &] (* Amiram Eldar, Mar 31 2020 *)
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 30 2008
EXTENSIONS
311 inserted, sequence extended by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020
STATUS
approved