login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = cos(2*n*arcsin(sqrt(3))) = (-1)^n*cosh(2*n*arcsinh(sqrt(2))).
25

%I #19 Dec 28 2023 19:34:15

%S 1,-5,49,-485,4801,-47525,470449,-4656965,46099201,-456335045,

%T 4517251249,-44716177445,442644523201,-4381729054565,43374646022449,

%U -429364731169925,4250272665676801,-42073361925598085,416483346590304049

%N a(n) = cos(2*n*arcsin(sqrt(3))) = (-1)^n*cosh(2*n*arcsinh(sqrt(2))).

%C Apart from sign, same as A001079 (see first formula).

%H G. C. Greubel, <a href="/A146311/b146311.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-10,-1).

%F a(n) = (-1)^n * A001079(n).

%F From _Colin Barker_, Oct 26 2014: (Start)

%F a(n) = ((-5-2*sqrt(6))^n + (-5+2*sqrt(6))^n)/2.

%F a(n) = -10*a(n-1)-a(n-2).

%F G.f.: (5*x+1) / (x^2+10*x+1).

%F (End)

%t Table[Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 100}]

%t CoefficientList[Series[(5*x + 1)/(x^2 + 10*x + 1), {x,0,50}], x] (* _G. C. Greubel_, Jul 02 2017 *)

%o (PARI) Vec((5*x+1)/(x^2+10*x+1) + O(x^100)) \\ _Colin Barker_, Oct 26 2014

%Y Cf. A001079.

%K sign,easy

%O 0,2

%A _Artur Jasinski_, Oct 29 2008

%E a(18) from _Colin Barker_, Oct 26 2014