Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Apr 04 2024 04:35:04
%S 2,1,2,4,10,1,14,8,6,5,22,4,26,7,10,16,34,3,38,20,14,11,46,8,50,13,18,
%T 28,58,5,62,32,22,17,70,12,74,19,26,40,82,7,86,44,30,23,94,16,98,25,
%U 34,52,106,9,110,56,38,29,118,20,122,31,42,64,130,11,134,68,46,35,142,24
%N a(n) = denominator of (n-6)/(2n) = denominator of (n+6)/(2n).
%C For numerators see A146306.
%C General formula:
%C 2*cos(2*Pi/n) = Hypergeometric2F1((n-6)/(2n), (n+6)/(2n), 1/2, 3/4) =
%C Hypergeometric2F1(A146306(n)/a(n), A146306(n+12)/a(n), 1/2, 3/4).
%C 2*cos(2*Pi/n) is a root of a polynomial of degree EulerPhi(n)/2 = A000010(n)/2 = A023022(n).
%C Records in this sequence are even and are congruent to 2 or 10 mod 12 (see A091999).
%C Indices where odd numbers occur in this sequence are 4n-2 (see A016825).
%C Indices where prime numbers occur in this sequence see A146309.
%C From _Robert Israel_, Apr 21 2021: (Start)
%C a(n) = 2*n if n == 1, 5, 7 or 11 (mod 12).
%C a(n) = n if n == 4 or 8 (mod 12).
%C a(n) = 2*n/3 if n == 3 or 9 (mod 12).
%C a(n) = n/2 if n == 2 or 10 (mod 12).
%C a(n) = n/3 if n == 0 (mod 12).
%C a(n) = n/6 if n == 6 (mod 12). (End)
%C Sum_{k=1..n} a(k) ~ (77/144) * n^2. - _Amiram Eldar_, Apr 04 2024
%H Robert Israel, <a href="/A146307/b146307.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-1).
%p f:= n -> denom((n-6)/(2*n)):
%p map(f, [$1..100]); # _Robert Israel_, Apr 20 2021
%t Table[Denominator[(n - 6)/(2 n)], {n, 1, 100}]
%t LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-1},{2,1,2,4,10,1,14,8,6,5,22,4,26,7,10,16,34,3,38,20,14,11,46,8},80] (* _Harvey P. Dale_, May 15 2022 *)
%Y Cf. A007310, A051724, A091999, A146306 (numerators), A146308.
%K nonn,easy,frac,look
%O 1,1
%A _Artur Jasinski_, Oct 29 2008