Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 04 2024 07:54:25
%S -5,-1,-1,-1,-1,0,1,1,1,1,5,1,7,2,3,5,11,1,13,7,5,4,17,3,19,5,7,11,23,
%T 2,25,13,9,7,29,5,31,8,11,17,35,3,37,19,13,10,41,7,43,11,15,23,47,4,
%U 49,25,17,13,53,9,55,14,19,29,59,5,61,31,21,16,65,11,67,17,23,35,71,6,73,37
%N a(n) = numerator of (n-6)/(2n).
%C For denominators see A146307.
%C General formula:
%C 2*cos(2*Pi/n) = Hypergeometric2F1((n-6)/(2n), (n+6)/(2n), 1/2, 3/4) =
%C Hypergeometric2F1(a(n)/A146307(n), a(n+12)/A146307(n), 1/2, 3/4).
%C 2*cos(2*Pi/n) is root of polynomial of degree = EulerPhi(n)/2 = A000010(n)/2 = A023022(n).
%C Records in this sequence are congruent to 1 or 5 mod 6 (see A007310).
%C First occurrence n in this sequence see A146308.
%F a(n+5) = A051724(n).
%F Sum_{k=1..n} a(k) ~ (77/288) * n^2. - _Amiram Eldar_, Apr 04 2024
%e Fractions begin with -5/2, -1, -1/2, -1/4, -1/10, 0, 1/14, 1/8, 1/6, 1/5, 5/22, 1/4, ...
%t Table[Numerator[(n - 6)/(2 n)], {n, 1, 100}]
%Y Cf. A000010, A007310, A023022, A051724, A146307 (denominators), A146308.
%K sign,easy
%O 1,1
%A _Artur Jasinski_, Oct 29 2008