login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A001221(n)), giving the number of divisors of n with m distinct prime factors.
15

%I #33 Apr 23 2017 01:01:53

%S 1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,3,1,2,1,2,1,1,1,1,3,2,1,1,1,2,1,1,2,1,

%T 1,4,1,1,1,3,2,1,1,1,3,2,1,2,1,1,2,1,1,1,1,4,3,1,2,1,2,1,1,3,1,3,2,1,

%U 1,1,3,3,1,1,1,1,5,1,2,1,1,2,1,1,2,1,1,4,4,1,1,1,2,1,1,2,1,1,4,3,1,1,1,3,3

%N Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A001221(n)), giving the number of divisors of n with m distinct prime factors.

%C The formula used in obtaining the n-th row (see below) also gives the number of divisors of the k-th power of n.

%C Two numbers have identical rows in the table if and only if they have the same prime signature.

%C T(n,0)=1.

%H G. C. Greubel, <a href="/A146289/b146289.txt">Table of n, a(n) for the first 500 rows, flattened</a>

%H Anonymous?, <a href="http://xrjunque.nom.es/precis/polycalc.aspx">Polynomial calculator</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a>

%H G. Xiao, WIMS server, <a href="http://wims.unice.fr/~wims/en_tool~algebra~factor.en.html">Factoris</a> (both expands and factors polynomials)

%F If the canonical factorization of n into prime powers is Product p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (1 + e(p) k).

%e Rows begin:

%e 1;

%e 1,1;

%e 1,1;

%e 1,2;

%e 1,1;

%e 1,2,1;

%e 1,1;

%e 1,3;

%e 1,2;

%e 1,2,1;

%e ...

%e 12 has 1 divisor with 0 distinct prime factors (1); 3 with 1 (2, 3 and 4); and 2 with 2 (6 and 12), for a total of 6. The 12th row of the table therefore reads (1, 3, 2). These are the positive coefficients of the polynomial equation 1 + 3k + 2k^2 = (1 + 2k)(1 + k), derived from the prime factorization of 12 (namely, 2^2*3^1).

%p f:= proc(n)

%p local F,G,f,t,k;

%p F:= ifactors(n)[2];

%p G:= mul(1+f[2]*t, f= F);

%p seq(coeff(G,t,k),k=0..nops(F));

%p end proc:

%p seq(f(n),n=1..100); # _Robert Israel_, Feb 10 2015

%t Join[{{1}}, Table[nn = DivisorSigma[0, n];CoefficientList[Series[Product[1 + i x, {i, FactorInteger[n][[All, 2]]}], {x, 0,nn}], x], {n, 2, 100}]] // Grid (* _Geoffrey Critzer_, Feb 09 2015 *)

%o (PARI) tabf(nn) = {for (n=1, nn, vd = divisors(n); vo = vector(#vd, k, omega(vd[k])); for (k=0, vecmax(vo), print1(#select(x->x==k, vo), ", ");); print(););} \\ _Michel Marcus_, Apr 22 2017

%Y Row sums equal A000005(n).

%Y T(n, 1) = A001222(n) for n>1. T(n, A001221(n)) = A005361(n).

%Y Row n of A007318 is identical to row A002110(n) of this table and also identical to the row for any squarefree number with n prime factors.

%Y Cf. A146290. Also cf. A146291, A146292.

%K nonn,tabf

%O 1,7

%A _Matthew Vandermast_, Nov 11 2008