1,2

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

a(n) = A000005(A025487(n)).

If A025487(n)'s canonical factorization into prime powers is Product p^e(p), then a(n) = Product (e(p) + 1).

a(4)=4 because 4 positive integers divide evenly into A025487(4)=6: 1, 2, 3 and 6.

(Haskell)

a146288 = a000005 . a025487 -- Reinhard Zumkeller, Sep 17 2014

For the number of divisors of n, see A000005.

a(n) = sum of the n-th row of A146290, A146292.

A rearrangement of A080444.

Sequence in context: A117248 A343292 A079788 * A244361 A199424 A184160

Adjacent sequences: A146285 A146286 A146287 * A146289 A146290 A146291

nonn

Matthew Vandermast, Nov 11 2008

approved