login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of intersection points of all lines through the vertices of a regular n-gon.
16

%I #21 Sep 12 2021 12:23:51

%S 3,5,15,37,91,145,333,471,891,901,1963,2185,3795,3969,6681,5563,10963,

%T 11141,17031,17293,25323,21913,36325,36479,50571,50485,68643,51661,

%U 91171,90753,118833,118355,152355,139861,192511,191445,240123,238481

%N Number of intersection points of all lines through the vertices of a regular n-gon.

%C This includes intersection points outside of the n-gon. Note that for odd n, n divides a(n); for even n, n divides a(n)-1. For odd n, it appears that a(n)=n(n^3-7n^2+15n-1)/8.

%C That formula is correct: see the Sidorenko link. - _N. J. A. Sloane_, Sep 12 2021

%H Jon E. Schoenfield, <a href="/A146212/b146212.txt">Table of n, a(n) for n = 3..100</a>

%H T. D. Noe, <a href="http://www.sspectra.com/math/A146212.gif">Pentagon Illustrated</a>

%H J. F. Rigby, <a href="https://doi.org/10.1007/BF00147438">Multiple intersections of diagonals of regular polygons, and related topics</a>, Geom. Dedicata 9 (1980), 207-238.

%H Scott R. Shannon, <a href="/A146212/a146212.png">Image for n = 3</a>. In this and other images the dots showing the regular n-gon's vertices are slightly larger and circled with white for clarity. The dot color key is at the top-left of the image.

%H Scott R. Shannon, <a href="/A146212/a146212_1.png">Image for n = 4</a>.

%H Scott R. Shannon, <a href="/A146212/a146212_2.png">Image for n = 5</a>.

%H Scott R. Shannon, <a href="/A146212/a146212_3.png">Image for n = 6</a>.

%H Scott R. Shannon, <a href="/A146212/a146212_4.png">Image for n = 7</a>.

%H Scott R. Shannon, <a href="/A146212/a146212_5.png">Image for n = 8</a>.

%H Scott R. Shannon, <a href="/A146212/a146212_6.png">Image for n = 9</a>.

%H Scott R. Shannon, <a href="/A146212/a146212_7.png">Image for n = 10</a>.

%H Scott R. Shannon, <a href="/A146212/a146212_8.png">Image for n = 11</a>.

%H Scott R. Shannon, <a href="/A146212/a146212_9.png">Image for n = 12</a>.

%H Alexander Sidorenko, <a href="/A344857/a344857.txt">Explicit Formulas for Odd-Indexed Terms in A344899, A146212, and A344857.</a>

%F There is a formula for odd n: see Comment section and the Sidorenko link. - _N. J. A. Sloane_, Sep 12 2021

%e a(5)=15 because there are 5 points inside the pentagon, 5 points on the pentagon and five points outside of the pentagon.

%Y Cf. A006561, A007569, A146213.

%Y Bisection: A347319, A347321.

%K nice,nonn

%O 3,1

%A _T. D. Noe_, Oct 28 2008

%E More terms from _Jon E. Schoenfield_, Nov 10 2008