%I #9 Sep 08 2022 08:45:38
%S 1,1,2,5,15,0,21,19,6,9,15,22,11,15,16,7,7,2,21,1,12,15,11,24,7,13,18,
%T 23,1,22,23,9,0,1,13,22,5,7,18,15,11,10,19,19,22,1,1,22,1,25,12,7,13,
%U 8,3,25,2,23,15,10,23,13,24,19,7,8,11,15,14,25,25,12,7,23,24,17,13,2,19,13,16
%N Bell numbers (A000110) read mod 26.
%H G. C. Greubel, <a href="/A146116/b146116.txt">Table of n, a(n) for n = 0..10000</a>
%H W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa35/aa3511.pdf">Arithmetic properties of Bell numbers to a composite modulus I</a>, Acta Arithmetica 35 (1979), pp. 1-16.
%F a(n+75718776648063) = a(n). - _G. C. Greubel_, Feb 02 2016
%t Mod[BellB[Range[0, 100]], 26] (* _G. C. Greubel_, Feb 02 2016 *)
%o (Magma) [Bell(n) mod 26: n in [0..100]]; // _G. C. Greubel_, Feb 02 2016
%Y Cf. A000110, A146113, A146114, A146115, A146117, A146118, A146119.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Feb 07 2009