%I #13 Sep 08 2022 08:45:38
%S 1,1,2,5,15,12,3,17,0,7,15,10,17,17,2,5,7,4,19,17,12,11,3,6,9,13,14,9,
%T 15,12,7,13,4,7,19,10,17,1,6,9,7,8,7,5,16,15,15,2,1,1,10,17,3,12,11,
%U 17,0,15,3,18,17,5,18,1,15,12,3,9,16,7,15,2,5,13,2,17,7,8,15,9,4,15,3,14,13,9,18
%N Bell numbers (A000110) read mod 20.
%H G. C. Greubel, <a href="/A146110/b146110.txt">Table of n, a(n) for n = 0..10000</a>
%H W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa35/aa3511.pdf">Arithmetic properties of Bell numbers to a composite modulus I</a>, Acta Arithmetica 35 (1979), pp. 1-16.
%F a(n+9372) = a(n). - _G. C. Greubel_, Feb 01 2016
%t Mod[BellB[Range[0,90]],20] (* _Harvey P. Dale_, May 12 2012 *)
%o (Magma) [Bell(n) mod 20: n in [0..100]]; // _Vincenzo Librandi_, Feb 02 2016
%Y Cf. A000110, A146107, A146108, A146109, A146111, A146112, A146113.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Feb 07 2009