login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A146079 Period 9: repeat 2,4,8,5,4,5,8,4,2. 0
2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5, 8, 4, 2, 2, 4, 8, 5, 4, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Also the decimal expansion of 82848614/333333333 or the continued fraction rep. of (252629+sqrt(142904412730))/281217.

Palindromic symmetry: a(9k+i) = a(9k+8-i).

LINKS

Table of n, a(n) for n=0..104.

FORMULA

a(n) = a(n-9).

G.f.: -(2+4*x+8*x^2+5*x^3+4*x^4+5*x^5+8*x^6+4*x^7+2*x^8) / ((x-1) * (1+x+x^2) * (x^6+x^3+1)) .

a(n) = (1/54)*{7*(n mod 9)+19*[(n+1) mod 9]+31*[(n+2) mod 9]-11*[(n+3) mod 9]+[(n+4) mod 9]+13*[(n+5) mod 9]+25*[(n+6) mod 9]-17*[(n+7) mod 9]-5*[(n+8) mod 9]}, with n>=0. [Paolo P. Lava, Sep 16 2009]

a(n) = n^2 + n + 2 (mod 9). [Arkadiusz Wesolowski, Jul 03 2012]

MATHEMATICA

Flatten@Table[{2, 4, 8, 5, 4, 5, 8, 4, 2}, {10}] (* Arkadiusz Wesolowski, Jul 03 2012 *)

PadRight[{}, 120, {2, 4, 8, 5, 4, 5, 8, 4, 2}] (* Harvey P. Dale, Jan 25 2016 *)

CROSSREFS

Sequence in context: A135447 A163339 A092892 * A165669 A227818 A300890

Adjacent sequences:  A146076 A146077 A146078 * A146080 A146081 A146082

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Oct 27 2008

EXTENSIONS

Unrelated comments removed by R. J. Mathar, Sep 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 02:50 EDT 2020. Contains 337289 sequences. (Running on oeis4.)