login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1-x*(1-9*x)).
6

%I #63 Oct 03 2024 23:25:32

%S 1,1,-8,-17,55,208,-287,-2159,424,19855,16039,-162656,-307007,1156897,

%T 3919960,-6492113,-41771753,16657264,392603041,242687665,-3290739704,

%U -5474928689,24141728647,73416086848,-143859470975,-804604252607

%N Expansion of 1/(1-x*(1-9*x)).

%C Row sums of Riordan array (1, x(1-9x)).

%H G. C. Greubel, <a href="/A146078/b146078.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,-9).

%F a(n) = a(n-1) - 9*a(n-2), a(0)=1, a(1)=1.

%F a(n) = Sum_{k=0..n} A109466(n,k)*9^(n-k).

%F From _G. C. Greubel_, Jan 31 2016: (Start)

%F G.f.: 1/(1-x+9*x^2).

%F E.g.f.: exp(x/2)*(cos(sqrt(35)*x/2) + (1/sqrt(35))*sin(sqrt(35)*x/2)). (End)

%F a(n) = Product_{k=1..n} (1 + 6*cos(k*Pi/(n+1))). - _Peter Luschny_, Nov 28 2019

%F a(n) = 3^n * U(n, 1/6), where U(n, x) is the Chebyshev polynomial of the second kind. - _Federico Provvedi_, Mar 28 2022

%t LinearRecurrence[{1, -9}, {1, 1}, 100] (* _G. C. Greubel_, Jan 30 2016 *)

%o (Sage) [lucas_number1(n,1,9) for n in range(1, 27)] # _Zerinvary Lajos_, Apr 22 2009

%o (PARI) x='x+O('x^30); Vec(1/(1-x+9*x^2)) \\ _G. C. Greubel_, Jan 19 2018

%o (Magma) I:=[1,1]; [n le 2 select I[n] else Self(n-1) - 9*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 19 2018

%Y Cf. A010892, A107920, A106852, A106853, A106854, A145934, A145976, A145978.

%K sign,easy

%O 0,3

%A _Philippe Deléham_, Oct 27 2008