Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jan 17 2021 03:13:40
%S 1,0,0,7,1,8,4,4,7,6,4,1,4,6,7,6,2,2,8,6,4,4,7,6,0,1,4,7,4,5,0,4,3,8,
%T 4,9,6,6,4,2,9,6,5,4,7,1,9,4,5,8,8,3,1,1,3,7,1,6,4,3,6,2,0,3,1,7,2,3,
%U 5,2,3,9,0,3,8,0,8,9,8,1,6,3,5,2,7,8,6,8,9,4,4,2,8,9,5,8,5,9,4,9
%N Decimal expansion of Hypergeometric2F1[1, 1/8, 9/8, 1/16] used in BBP Pi formula.
%C BBP formula for Pi = 4*A145963 - (1/2)*A145960 - (1/2)*A145961 - A145962.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BBPFormula.html">BBP Formula</a>.
%F Equals Sum_{k>=0} (1/16)^k / (8*k+1).
%e 1.00718447641467622864476...
%t First[RealDigits[Hypergeometric2F1[1, 1/8, 9/8, 1/16], 10, 100]]
%t N[(1/16) (Pi + 2 Sqrt[2] (2 ArcCoth[Sqrt[2]] + ArcTan[2 Sqrt[2]]) + 2 ArcTan[3/4] + 2 Log[5]), 100]
%t N[Sum[(1/16)^n (1/(8n+1)),{n,0,Infinity}], 100]
%o (PARI) suminf(k=0, (1/16)^k / (8*k+1)) \\ _Michel Marcus_, Jan 16 2021
%Y Cf. A000796, A145960, A145961, A145962.
%K cons,nonn
%O 1,4
%A _Artur Jasinski_, Oct 25 2008