login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of f-vectors of the simplicial complexes dual to the permutohedra of type B_n.
21

%I #73 Jan 02 2024 03:13:58

%S 1,1,2,1,8,8,1,26,72,48,1,80,464,768,384,1,242,2640,8160,9600,3840,1,

%T 728,14168,72960,151680,138240,46080,1,2186,73752,595728,1948800,

%U 3037440,2257920,645120,1,6560,377504,4612608,22305024,52899840

%N Triangle of f-vectors of the simplicial complexes dual to the permutohedra of type B_n.

%C The Coxeter group of type B_n may be realized as the group of n X n matrices with exactly one nonzero entry in each row and column, that entry being either +1 or -1. The order of the group is 2^n*n!. The orbit of the point (1,2,...,n) (or any sufficiently generic point (x_1,...,x_n)) under the action of this group is a set of 2^n*n! distinct points whose convex hull is defined to be the permutohedron of type B_n. The rows of this table are the f-vectors of the simplicial complexes dual to these type B permutohedra. Some examples are given in the Example section below. See A060187 for the corresponding table of h-vectors of type B permutohedra.

%C This is the (unsigned) triangle of connection constants between the polynomial sequences (2*x + 1)^n, n >= 0, and binomial(x+k,k), k >= 0. For example, (2*x + 1)^2 = 8*binomial(x+2,2) - 8*binomial(x+1,1) + 1 and (2*x + 1)^3 = 48*binomial(x+3,3) - 72*binomial(x+2,2) + 26*binomial(x+1,1) - 1. Cf. A163626. - _Peter Bala_, Jun 06 2019

%H Sandrine Dasse-Hartaut and Pawel Hitczenko, <a href="http://arxiv.org/abs/1202.3092">Greek letters in random staircase tableaux</a> arXiv:1202.3092v1 [math.CO], 2012.

%H Peter Bala, <a href="/A131689/a131689.pdf">Deformations of the Hadamard product of power series</a>

%H M. Dukes and C. D. White, <a href="http://arxiv.org/abs/1603.01589">Web Matrices: Structural Properties and Generating Combinatorial Identities</a>, arXiv:1603.01589 [math.CO], 2016.

%H S. Fomin and N. Reading, <a href="https://arxiv.org/abs/math/0505518">Root systems and generalized associahedra</a>, Lecture notes for IAS/Park-City 2004; arXiv:math/0505518 [math.CO], 2005-2008.

%H Ghislain R. Franssens, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Franssens/franssens13.html">On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.

%H Gábor Hetyei, <a href="https://math.uncc.edu/sites/math.uncc.edu/files/fields/preprint_archive/paper/2019_16.pdf">The type B permutohedron and the poset of intervals as a Tchebyshev transform</a>, University of North Carolina-Charlotte (2019).

%H Shi-Mei Ma, <a href="https://doi.org/10.37236/2344">A family of two-variable derivative polynomials for tangent and secant</a>, El J. Combinat. 20 (1) (2013) P11.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Truncated_cuboctahedron">Truncated cuboctahedron</a>

%F T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(2*i+1)^n.

%F Recurrence relation: T(n,k) = (2*k + 1)*T(n-1,k) + 2*k*T(n-1,k-1) with T(0,0) = 1 and T(0,k) = 0 for k >= 1.

%F Relation with type B Stirling numbers of the second kind: T(n,k) = 2^k*k!*A039755(n,k).

%F Row sums A080253. The matrix product A060187 * A007318 produces the mirror image of this triangle.

%F E.g.f.: exp(t)/(1 + x - x* exp(2*t)) = 1 + (1 + 2*x)*t + (1 + 8*x + 8*x^2 )*t^2/2! + ... .

%F From _Peter Bala_, Oct 13 2011: (Start)

%F The polynomials in the first column of the array ((1+t)*P^(-1)-t*P)^(-1), P Pascal's triangle and I the identity, are the row polynomials of this table.

%F The polynomials in the first column of the array ((1+t)*I-t*A062715)^(-1) are, apart from the initial 1, the row polynomials of this table with an extra factor of t. Cf. A060187. (End)

%F From _Peter Bala_, Jul 18 2013: (Start)

%F Integrating the above e.g.f. with respect to x from x = 0 to x = 1 gives Sum_{k = 0..n} (-1)^k*T(n,k)/(k + 1) = 2^n*Bernoulli(n,1/2), the n-th cosecant number.

%F The corresponding Type A result is considered in A028246 as Worpitzky's algorithm.

%F Also for n >= 0, Sum_{k = 0..2*n} (-1)^k*T(2*n,k)/((k + 1)*(k + 2)) = 1/2*2^(2*n)*Bernoulli(2*n,1/2) and for n >= 1, Sum_{k = 0..2*n-1} (-1)^k*T(2*n - 1,k)/((k + 1)*(k + 2)) = -1/2 * 2^(2*n)* Bernoulli(2*n,1/2).

%F The nonzero cosecant numbers are given by A001896/A001897. (End)

%F From _Peter Bala_, Jul 22 2014: (Start)

%F The row polynomials R(n,x) satisfy the recurrence equation R(n+1,x) = D(R(n,x)) with R(0,x) = 1, where D is the operator 1 + 2*x + 2*x(1 + x)*d/dx.

%F R(n,x) = 1/(1 + x)* Sum_{k = 0..inf} (2*k + 1)^n*(x/(1 + x))^k, valid for x in the open interval (-1/2, inf). Cf. A019538.

%F The shifted row polynomial x*R(n,x) = (1 + x)^n*P(n,x/(1 + x)) where P(n,x) denotes the n-th row polynomial of A060187.

%F The row polynomials R(n,x) have only real zeros.

%F Symmetry: R(n,x) = (-1)^n*R(n,-1 - x). Consequently the zeros of R(n,x) lie in the open interval (-1, 0). (End)

%F From _Peter Bala_, May 28 2015: (Start)

%F Recurrence for row polynomials: R(n,x) = 1 + x*Sum_{k = 0..n-1} binomial(n,k)2^(n-k)*R(k,x) with R(0,x) = 1.

%F For a fixed integer k, the expansion of the function A(k,z) := exp( Sum_{n >= 1} R(n,k)*z^n/n ) has integer coefficients and satisfies the functional equation A(k,z)^(k + 1) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(k,z))) )^k, where BINOMIAL(F(z))= 1/(1 - z)*F(z/(1 - z)) denotes the binomial transform of the o.g.f. F(z). A(k,z) = A(-(k + 1),-z). Cf. A019538.

%F For cases see A258377 (k = 1), A258378(k = 2), A258379 (k = 3), A258380 (k = 4) and A258381 (k = 5). (End)

%F T(n,k) = A154537(n,k)*k! = A039755(n,k)*(2^k*k!), 0 <= k <= n. - _Wolfdieter Lang_, Apr 19 2017

%F From _Peter Bala_, Jan 12 2018: (Start)

%F n-th row polynomial R(n,x) = (1 + 2*x) o (1 + 2*x) o ... o (1 + 2*x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E13 in the Bala link.

%F R(n,x) = Sum_{k = 0..n} binomial(n,k)*2^k*F(k,x) where F(k,x) is the Fubini polynomial of order k, the k-th row polynomial of A019538. (End)

%e The triangle begins

%e n\k|..0.....1.....2.....3.....4.....5

%e =====================================

%e 0..|..1

%e 1..|..1.....2

%e 2..|..1.....8.....8

%e 3..|..1....26....72....48

%e 4..|..1....80...464...768...384

%e 5..|..1...242..2640..8160..9600..3840

%e ...

%e Row 2: the permutohedron of type B_2 is an octagon with 8 vertices and 8 edges. Its dual, also an octagon, has f-vector (1,8,8) - row 3 of this triangle.

%e Row 3: for an appropriate choice of generic point in R_3, the permutohedron of type B_3 is realized as the great rhombicuboctahedron, also known as the truncated cuboctahedron, with 48 vertices, 72 edges and 26 faces (12 squares, 8 regular hexagons and 6 regular octagons). See the Wikipedia entry and also [Fomin and Reading p.22]. Its dual polyhedron is a simplicial polyhedron, the disdyakis dodecahedron, with 26 vertices, 72 edges and 48 triangular faces and so its f-vector is (1,26,72,48) - row 4 of this triangle.

%e From _Peter Bala_, Jun 06 2019: (Start)

%e Examples of falling factorials identities for odd numbered rows: Let (x)_n = x*(x - 1)*...*(x - n + 1) with (x)_0 = 1 denote the falling factorial power.

%e Row 1: 2*(x)_1 + (0 - 2*x)_1 = 0.

%e Row 3: 48*(x)_3 + 72*(x)_2 * (2 - 2*x)_1 + 26*(x)_1 * (2 - 2*x)_2 + (2 - 2*x)_3 = 0

%e Row 5: 3840*(x)_5 + 9600*(x)_4 * (4 - 2*x)_(1) + 8160*(x)_3 * (4 - 2*x)_2 + 2640*(x)_2 * (4 - 2*x)_3 + 242*(x)_1 * (4 - 2*x)_4 + (4 - 2*x)_5 = 0. (End)

%p with(combinat):

%p T:= (n,k) -> add((-1)^(k-i)*binomial(k,i)*(2*i+1)^n,i = 0..k):

%p for n from 0 to 9 do

%p seq(T(n,k),k = 0..n);

%p end do;

%t T[n_, k_] := Sum[(-1)^(k - i)*Binomial[k, i]*(2*i + 1)^n, {i, 0, k}];

%t Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 02 2019 *)

%Y Cf. A019538 (f-vectors type A permutohedra), A060187 (h-vectors type B permutohedra), A080253 (row sums), A145905, A062715, A028246.

%Y Cf. A258377, A258378, A258379, A258380, A258381.

%Y Cf. A039755, A154537.

%K easy,nonn,tabl

%O 0,3

%A _Peter Bala_, Oct 26 2008