Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jul 26 2022 15:43:30
%S 0,1,0,12,50,405,3234,29680,300348,3337425,40382540,528644556,
%T 7445076990,112248853717,1803999433950,30788257007040,556112892188504,
%U 10598857474652865,212565974908314168,4475073155964510700
%N Number of excedances in all odd permutations of {1,2,...,n} with no fixed points.
%H Vincenzo Librandi, <a href="/A145886/b145886.txt">Table of n, a(n) for n = 1..300</a>
%H R. Mantaci and F. Rakotondrajao, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00531-6">Exceedingly deranging!</a>, Advances in Appl. Math., 30 (2003), 177-188.
%F E.g.f.: (1/4)*z^2*(2-2*z+z^2)*exp(-z)/(1-z)^2.
%F a(n) = Sum_{k=1..n-1} k * A145880(n,k), n>=2.
%F a(n) ~ n!*exp(-1)*n/4. - _Vaclav Kotesovec_, Oct 07 2013
%F D-finite with recurrence +(-3*n+7)*a(n) +(3*n+2)*(n-3)*a(n-1) +(3*n^2-n+16)*a(n-2) +(3*n^2-23*n+32)*a(n-3) +(3*n-5)*(n-3)*a(n-4)=0. - _R. J. Mathar_, Jul 26 2022
%e a(4)=12 because the odd derangements of {1,2,3,4} are 4123, 3142, 4312, 2413, 2341 and 3421, having 1, 2, 2, 2, 3 and 2, excedances, respectively.
%p G:=(1/4)*z^2*(2-2*z+z^2)*exp(-z)/(1-z)^2: Gser:=series(G,z=0,30): seq(factorial(n)*coeff(Gser,z,n),n=1..21);
%t Rest[CoefficientList[Series[1/4*x^2*(2-2*x+x^2)*E^(-x)/(1-x)^2, {x, 0, 20}], x]* Range[0, 20]!] (* _Vaclav Kotesovec_, Oct 07 2013 *)
%Y Cf. A145880, A145881, A145887.
%K nonn
%O 1,4
%A _Emeric Deutsch_, Nov 06 2008