login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3-compositions of n.
5

%I #30 Mar 08 2021 02:56:02

%S 1,3,15,73,354,1716,8318,40320,195444,947380,4592256,22260144,

%T 107902088,523036176,2535324816,12289536016,59571339552,288761470848,

%U 1399719859808,6784893012864,32888561860032,159421452802624,772767131681280,3745851196992000

%N Number of 3-compositions of n.

%C A 3-composition of n is a matrix with three rows, such that each column has at least one nonzero element and whose elements sum up to n.

%C Matrix inverse of (A000217(A004736)*A154990). - _Mats Granvik_, Jan 19 2009

%C (1 +3*x +15*x^2 +73*x^3 + ...) = 1/(1 -3*x -6*x^2 -10*x^3 -15*x^4 - ...). - _Gary W. Adamson_, Jul 27 2009

%C For n>1, a(n) is the number of generalized compositions of n-1 when there are i^2/2 +3i/2 +1 different types of i, (i=1,2,...). - _Milan Janjic_, Sep 24 2010

%D G. Louchard, Matrix compositions: a probabilistic approach, Proceedings of GASCom and Bijective Combinatorics 2008, Bibbiena, Italy, pp. 159-170.

%H Alois P. Heinz, <a href="/A145839/b145839.txt">Table of n, a(n) for n = 0..1000</a>

%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Janjic/janjic63.html">On Linear Recurrence Equations Arising from Compositions of Positive Integers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.

%H E. Munarini, M. Poneti, and S. Rinaldi, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Rinaldi/rinaldi.html">Matrix compositions</a>, JIS 12 (2009) 09.4.8.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-6,2).

%F a(n+3) = 6*a(n+2) - 6*a(n+1) + 2*a(n).

%F G.f.: (1-x)^3/(2*(1-x)^3 - 1).

%F a(n) = Sum_{k>=0} C(n+3*k-1,n) / 2^(k+1). - _Vaclav Kotesovec_, Dec 31 2013

%F a(n) = Sum_{j=0..n-1} binomial(n-j+2, 2)*a(j) with a(0) = 1. - _G. C. Greubel_, Mar 07 2021

%p a:= proc(n) option remember; `if`(n=0, 1,

%p add(a(n-j)*binomial(j+2, 2), j=1..n))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Sep 01 2015

%t Table[Sum[Binomial[n+3*k-1,n]/2^(k+1),{k,0,Infinity}],{n,0,20}] (* _Vaclav Kotesovec_, Dec 31 2013 *)

%t a[n_]:= a[n]= If[n==0, 1, Sum[Binomial[n-j+2, 2]*a[j], {j,0,n-1}]]; Table[a[n], {n, 0, 20}] (* _G. C. Greubel_, Mar 07 2021 *)

%o (Sage)

%o @CachedFunction

%o def a(n):

%o if n==0: return 1

%o else: return sum( binomial(n-j+2,2)*a(j) for j in (0..n-1))

%o [a(n) for n in (0..25)] # _G. C. Greubel_, Mar 07 2021

%o (Magma) I:=[3,15,73]; [1] cat [n le 3 select I[n] else 6*Self(n-1) - 6*Self(n-2) + 2*Self(n-3): n in [1..30]]; // _G. C. Greubel_, Mar 07 2021

%Y Cf. A003480 (2-compositions), A145840 (4-compositions), A145841 (5-compositions).

%Y Column k=3 of A261780.

%K nonn,easy

%O 0,2

%A Simone Rinaldi (rinaldi(AT)unisi.it), Oct 21 2008

%E Offset corrected by _Alois P. Heinz_, Aug 31 2015