OFFSET
0,13
COMMENTS
Osgood and Wu abstract: We investigate the coefficients generated by expressing the falling factorial (xy)_k as a linear combination of falling factorial products (x)_l (y)_m for l,m = 1,...,k. Algebraic and combinatoric properties of these coefficients are discussed, including recurrence relations, closed-form formulas, relations with Stirling numbers and a combinatorial characterization in terms of conjoint ranking tables.
LINKS
Brad Osgood, William Wu, Falling Factorials, Generating Functions and Conjoint Ranking Tables, arXiv:0810.3327 [math.CO], 2008.
EXAMPLE
Full array of coefficients:
[0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 15120, 40320, 24192, 4608, 255],
[0, 0, 10080, 544320, 1958040, 1796760, 588168, 74124, 3025],
[0, 0, 544320, 6108480, 12267360, 7988904, 2066232, 218484, 7770],
[0, 15120, 1958040, 12267360, 18329850, 9874746, 2229402, 212436, 6951],
[0, 40320, 1796760, 7988904, 9874746, 4690350, 965790, 85680, 2646],
[0, 24192, 588168, 2066232, 2229402, 965790, 185766, 15624, 462],
[0, 4608, 74124, 218484, 212436, 85680, 15624, 1260, 36],
[1, 255, 3025, 7770, 6951, 2646, 462, 36, 1]
MATHEMATICA
rows = 9;
c[k_, l_ /; l <= rows, m_ /; m <= rows] := Sum[(-1)^(k-p) Abs[StirlingS1[k, p]] StirlingS2[p, l] StirlingS2[p, m], {p, 1, k}];
c[rows, _, _] = Nothing;
Table[Table[c[rows, l-m+1, m], {m, 1, l}], {l, 1, 2rows-1}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
CROSSREFS
KEYWORD
fini,full,nonn
AUTHOR
Jonathan Vos Post, Oct 21 2008
EXTENSIONS
Corrected by Michel Marcus, Dec 15 2014
STATUS
approved