login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145836
Coefficients of a symmetric matrix representation of the 9th falling factorial power, read by antidiagonals.
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10080, 0, 0, 0, 15120, 544320, 544320, 15120, 0, 0, 40320, 1958040, 6108480, 1958040, 40320, 0, 0, 24192, 1796760, 12267360, 12267360, 1796760, 24192, 0, 1, 4608, 588168, 7988904, 18329850, 7988904, 588168, 4608, 1, 255, 74124, 2066232, 9874746, 9874746, 2066232, 74124, 255, 3025, 218484, 2229402, 4690350, 2229402, 218484, 3025, 7770, 212436, 965790, 965790, 212436, 7770, 6951, 85680, 185766, 85680, 6951, 2646, 15624, 15624, 2646, 462, 1260, 462, 36, 36, 1
OFFSET
0,13
COMMENTS
Osgood and Wu abstract: We investigate the coefficients generated by expressing the falling factorial (xy)_k as a linear combination of falling factorial products (x)_l (y)_m for l,m = 1,...,k. Algebraic and combinatoric properties of these coefficients are discussed, including recurrence relations, closed-form formulas, relations with Stirling numbers and a combinatorial characterization in terms of conjoint ranking tables.
LINKS
EXAMPLE
Full array of coefficients:
[0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 15120, 40320, 24192, 4608, 255],
[0, 0, 10080, 544320, 1958040, 1796760, 588168, 74124, 3025],
[0, 0, 544320, 6108480, 12267360, 7988904, 2066232, 218484, 7770],
[0, 15120, 1958040, 12267360, 18329850, 9874746, 2229402, 212436, 6951],
[0, 40320, 1796760, 7988904, 9874746, 4690350, 965790, 85680, 2646],
[0, 24192, 588168, 2066232, 2229402, 965790, 185766, 15624, 462],
[0, 4608, 74124, 218484, 212436, 85680, 15624, 1260, 36],
[1, 255, 3025, 7770, 6951, 2646, 462, 36, 1]
MATHEMATICA
rows = 9;
c[k_, l_ /; l <= rows, m_ /; m <= rows] := Sum[(-1)^(k-p) Abs[StirlingS1[k, p]] StirlingS2[p, l] StirlingS2[p, m], {p, 1, k}];
c[rows, _, _] = Nothing;
Table[Table[c[rows, l-m+1, m], {m, 1, l}], {l, 1, 2rows-1}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
CROSSREFS
Sequence in context: A234773 A348698 A203865 * A190293 A179729 A217867
KEYWORD
fini,full,nonn
AUTHOR
Jonathan Vos Post, Oct 21 2008
EXTENSIONS
Corrected by Michel Marcus, Dec 15 2014
STATUS
approved