login
Lesser p of twin primes (p,q) such that there exists an integer between sqrt(2p) and sqrt(2q)
3

%I #11 Nov 21 2013 12:49:27

%S 3,11,17,59,71,179,311,419,881,1151,2111,2591,3119,3527,4049,5099,

%T 15137,20807,21011,21839,24419,30011,34847,37811,41759,44699,46817,

%U 60899,68819,69191,83231,83639,86111,100799,103967,112337,135719,143111

%N Lesser p of twin primes (p,q) such that there exists an integer between sqrt(2p) and sqrt(2q)

%C The n-th prime p_n is in the sequence iff A145236(n) = A145236(n+1).

%H Harvey P. Dale, <a href="/A145701/b145701.txt">Table of n, a(n) for n = 1..500</a>

%t okQ[n_]:=Last[n]-First[n]==2&&Floor[Sqrt[2Last[n]]]>Sqrt[2First[n]]; Transpose[Select[Partition[Prime[Range[13300]],2,1],okQ]][[1]] (* _Harvey P. Dale_, Oct 26 2011 *)

%Y Cf. A001359, A006512, A145236.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, Oct 16 2008

%E Extended by _R. J. Mathar_, Aug 02 2010