login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = numerator of polynomial of genus 1 and level n for m = 7 : A[1,n](7).
4

%I #10 Jan 20 2019 23:20:22

%S 0,7,105,2219,31087,1088129,2538991,17772957,248821433,15675750559,

%T 21946050833,1689845914645,11828921402977,1076431847676451,

%U 7535022933740305,263725802680934699,3692161237533130831

%N a(n) = numerator of polynomial of genus 1 and level n for m = 7 : A[1,n](7).

%C For numerator of polynomial of genus 1 and level n for m = 1 see A001008.

%C Definition: The polynomial A[1,n](m) = A[genus 1,level n] is here defined as

%C Sum_{d=1..n-1} m^(n - d)/d

%C Few first A[1,n](m):

%C n=1: A[1,1](m)= 0;

%C n=2: A[1,2](m)= m;

%C n=3: A[1,3](m)= m/2 + m^2;

%C n=4: A[1,4](m)= m/3 + m^2/2 + m^3;

%C n=5: A[1,5](m)= m/4 + m^2/3 + m^3/2 + m^4.

%C General formula which uses these polynomials is:

%C (1/(n+1))Hypergeometric2F1[1,n,n+1,1/m] =

%C Sum_{x>=0} m^(-x)/(x+n) =

%C m^(n)*arctanh((2m-1)/(2m^2-2m+1)) - A[1,n](m) =

%C m^(n)*log(m/(m-1)) - A[1,n](m).

%p A145666 := proc(n) add( 7^(n-d)/d,d=1..n-1) ; numer(%) ; end proc:

%p seq(A145666(n),n=1..20) ; # _R. J. Mathar_, Feb 01 2011

%t m = 7; aa = {}; Do[k = 0; Do[k = k + m^(r - d)/d, {d, 1, r - 1}]; AppendTo[aa, Numerator[k]], {r, 1, 30}]; aa

%Y Cf. A145609-A145640, A145656-A145687.

%K frac,nonn

%O 1,2

%A _Artur Jasinski_, Oct 16 2008