login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=11.
1

%I #9 Jun 05 2016 23:34:25

%S 253,184195,111439537,188778591353,68526628697791,8291722072462741,

%T 13042878819984222253,3156376674436182358799,

%U 6492666819315227120658143,2985328203521141430107897005,361224712626058113043082041693

%N Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=11.

%C For denominators see A145630. For general properties of A_l(x) see A145609.

%t m = 11; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (* _Artur Jasinski_ *)

%t a[n_,m_]:=Integrate[(m-x^n)/(m-x),{x,0,1}]+(m^n-m)Log[m/(m-1)]

%t Table[11 a[2 n, 11] // FullSimplify // Numerator, {n,1,25}] (* _Gerry Martens_ , Jun 04 2016*)

%Y Cf. A145609 - A145640.

%K frac,nonn

%O 1,1

%A _Artur Jasinski_, Oct 14 2008

%E Edited by _R. J. Mathar_, Aug 21 2009