%I #11 Jun 05 2016 23:33:35
%S 39,2835,255191,257233353,2315100338,1833559470601,429052916136639,
%T 123567239847463143,56717363089986833887,2586311756903401044465,
%U 46553611624261219442817,154185561699553158848604845
%N Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=6.
%C For denominators see A145620. For general properties of A_l(x) see A145609.
%t m = 6; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (* _Artur Jasinski_ *)
%t a[n_,m_]:=Integrate[(m-x^n)/(m-x),{x,0,1}]+(m^n-m)Log[m/(m-1)]
%t Table[6 a[2 n, 6] // FullSimplify // Numerator, {n,1,25}] (* _Gerry Martens_ , Jun 04 2016 *)
%Y Cf. A145609 - A145640.
%K frac,nonn
%O 1,1
%A _Artur Jasinski_, Oct 14 2008
%E Edited by _R. J. Mathar_, Aug 21 2009
|