login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of the polynomial A_l(x) = Sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=1.
2

%I #8 Mar 17 2019 02:06:21

%S 2,12,20,280,2520,27720,360360,720720,4084080,15519504,5173168,

%T 356948592,8923714800,80313433200,2329089562800,144403552893600,

%U 13127595717600,13127595717600,485721041551200,485721041551200

%N Denominator of the polynomial A_l(x) = Sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=1.

%C For numerators and explicit examples of the polynomials see A145609.

%p A := proc(l,x) add(x^(l-d)/d,d=1..l-1) ; end: A145610 := proc(n) denom( A(2*n+1,1)) ; end: seq(A145610(n),n=1..20) ; # _R. J. Mathar_, Aug 21 2009

%t m = 1; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Denominator[k]], {r, 1, 30}]; aa (* _Artur Jasinski_ *)

%Y Cf. A145609 - A145640.

%K frac,nonn

%O 1,1

%A _Artur Jasinski_, Oct 14 2008

%E Edited by _R. J. Mathar_, Aug 21 2009