Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #15 Jan 17 2024 09:07:14
%S 8281,12032293,17494945741,25437639075121,36986309720280193,
%T 53778068895648325501,78193275187962944998261,
%U 113692968345229226379145993,165309497780688107192333275561,240359896080152162628426203519701,349483123591043463773624507584369693
%N Numbers n such that there exists x in N : (x+91)^3-x^3=n^2.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1454,-1).
%F a(n+2) = 1454*a(n+1)-a(n).
%F a(n) = A145529(n)*8281. - _Colin Barker_, Oct 20 2014
%F G.f.: -8281*x*(x-1) / (x^2-1454*x+1). - _Colin Barker_, Oct 20 2014
%e a(1)=8281 because the first relation is (455+91)^3-455^3=8281^2.
%t LinearRecurrence[{1454, -1}, {8281, 12032293}, 15] (* _Paolo Xausa_, Jan 17 2024 *)
%o (PARI) Vec(-8281*x*(x-1)/(x^2-1454*x+1) + O(x^20)) \\ _Colin Barker_, Oct 20 2014
%Y Cf. A145529.
%K easy,nonn
%O 1,1
%A _Richard Choulet_, Oct 12 2008
%E Editing and more terms from _Colin Barker_, Oct 20 2014