%I #9 Feb 22 2015 14:58:13
%S 5,6,14,30,62,90,126,254,510,1022,2046,4094,8190
%N In these bases, there exist numbers written with only one distinct digit whose translation in binary is also written with the same lonely digit.
%C All terms are equal to 2^n-2, except 5 and 90.
%C In base 2^n-2, we need 2 digits when there are n digits in binary.
%C In base 5, we need 3 digits for 5 digits in binary.
%C In base 90, we need 3 digits for 13 digits in binary.
%e In base 5 : 11111[2] = 111[5].
%e In base 90 : 1111111111111[2] = 111[90].
%o (Python) from math import *
%o .for b1 in range(2,3):
%o ....for b2 in range(b1+1,10001):
%o ........for m in range(2,20):
%o ............for n in range(2,m+1):
%o ................if (1-b1**m)*(1-b2)==(1-b1)*(1-b2**n):
%o ....................print "b1,b2=",b1,b2," m,n=",m,n
%K base,nonn,more
%O 1,1
%A _Sébastien Dumortier_ and Bastien Lapeyre, Oct 11 2008