login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of q^(1/6) * eta(q) / eta(q^5) in powers of q.
8

%I #16 Mar 25 2017 09:40:07

%S 1,-1,-1,0,0,2,-1,0,0,0,3,-2,-2,0,0,4,-3,-2,0,0,7,-5,-3,0,0,10,-6,-4,

%T 0,0,15,-10,-7,0,0,20,-13,-8,0,0,28,-19,-13,0,0,38,-25,-16,0,0,52,-34,

%U -23,0,0,68,-44,-28,0,0,91,-60,-40,0,0,118,-76,-48,0,0,153,-100,-66,0,0,196,-127,-82,0,0,252,-164,-107,0,0

%N Expansion of q^(1/6) * eta(q) / eta(q^5) in powers of q.

%H Seiichi Manyama, <a href="/A145466/b145466.txt">Table of n, a(n) for n = 0..10000</a>

%F Expansion of 1 / (G(x) * H(x)) = G(x^5)^2 - x * G(x^5) * H(x^5) - x^2 * H(x^5)^2 in powers of x where G(), H() are the Rogers-Ramanujan functions.

%F Euler transform of period 5 sequence [ -1, -1, -1, -1, 0, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (180 t)) = 5^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A035959.

%F Given g.f. A(x), then B(x) = A(x^3)^2 / x satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^3 + v^3 - 5*u*v - u^2*v^2.

%F Given g.f. A(x), then B(x) = A(x^3)^2 / x satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v * u^2 * w^2 + 5 * u * w * (u + w) - v^2 * (u^2 + u*w + w^2).

%F a(5*n + 3) = a(5*n + 4) = 0.

%F G.f.: 1 / (Product_{k>0} P(5, x^k)) where P(n,x) is the n-th cyclotomic polynomial.

%F a(5*n) = A145467(n). a(5*n + 1) = - A035969(n). a(5*n + 2) = - A145468(n).

%F Convolution inverse of A035959.

%F a(n) = -(1/n)*Sum_{k=1..n} A116073(k)*a(n-k), a(0) = 1. - _Seiichi Manyama_, Mar 25 2017

%e G.f. = 1 - x - x^2 + 2*x^5 - x^6 + 3*x^10 - 2*x^11 - 2*x^12 + 4*x^15 + ...

%e G.f. = 1/q - q^5 - q^11 + 2*q^29 - q^35 + 3*q^59 - 2*q^65 - 2*q^71 + 4*q^89 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x] / QPochhammer[ x^5], {x, 0, n}]; (* _Michael Somos_, Jun 26 2014 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^5 + A), n))};

%Y Cf. A035969, A058511, A145467, A145468.

%K sign

%O 0,6

%A _Michael Somos_, Oct 11 2008