login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145435
Decimal expansion of log(1/2 + 1/sqrt(2))/sqrt(5).
1
0, 8, 4, 1, 7, 7, 4, 0, 8, 0, 0, 0, 8, 3, 3, 2, 0, 3, 0, 3, 5, 5, 4, 8, 6, 9, 5, 3, 8, 4, 6, 6, 7, 2, 6, 7, 8, 8, 5, 5, 3, 1, 8, 4, 0, 3, 9, 9, 8, 8, 4, 5, 8, 2, 8, 8, 7, 7, 5, 9, 0, 1, 1, 7, 7, 4, 1, 6, 8, 9, 0, 6, 6, 6, 5, 1, 8, 7, 0, 6, 4, 8, 1, 0, 6, 4, 0, 3, 2, 2, 6, 9, 1
OFFSET
0,2
COMMENTS
This is an erroneous version of A086466 produced by the Apelblat formula, which contains two typos.
REFERENCES
Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.42.
FORMULA
Equals log(A014176/2)*A020762.
EXAMPLE
0.084177408000833203035548695384667267885531840399884582887759..
MAPLE
1/5*ln(1/2+1/2*2^(1/2))*5^(1/2) ;
MATHEMATICA
Join[{0}, RealDigits[Log[1/2+1/Sqrt[2] ]/Sqrt[5], 10, 120][[1]]] (* Harvey P. Dale, May 24 2016 *)
PROG
(PARI) default(realprecision, 100); 1/5*log(1/2+1/2*2^(1/2))*5^(1/2) \\ G. C. Greubel, Oct 02 2018
(Magma) SetDefaultRealField(RealField(100)); 1/5*Log(1/2+1/2*2^(1/2))*5^(1/2); // G. C. Greubel, Oct 02 2018
CROSSREFS
Sequence in context: A343739 A021547 A154527 * A379709 A197477 A133839
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Feb 08 2009
EXTENSIONS
Uncovered Apelblat errors. - R. J. Mathar, Mar 04 2009
STATUS
approved