login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{n>=1} (-1)^(n-1)*n^2/binomial(2n,n).
3

%I #30 Feb 24 2022 07:27:34

%S 1,2,5,5,6,7,2,8,4,7,2,2,8,7,9,6,7,6,8,8,8,8,4,5,3,4,1,3,6,3,9,5,1,5,

%T 6,5,9,6,6,0,3,4,3,4,5,3,9,6,7,7,6,8,2,7,6,1,9,4,3,9,5,1,1,6,8,0,5,9,

%U 5,1,0,2,7,6,3,1,0,9,4,4,3,0,9,1,0,8,0,7,7,8,8,2,4

%N Decimal expansion of Sum_{n>=1} (-1)^(n-1)*n^2/binomial(2n,n).

%C The numerator in the Apelblat table lacks the square (typo).

%D Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.40.

%H Steven Finch, <a href="/A145433/a145433.pdf">Central Binomial Coefficients</a> [Cached copy, with permission of the author]

%F Equals 4*(5-A002163*A002390)/125.

%e 0.125567284722879676...

%p evalf( 4/25-4/125*5^(1/2)*log(1/2+1/2*5^(1/2)), 120) ;

%t RealDigits[HypergeometricPFQ[{2, 2, 2}, {1, 3/2}, -1/4]/2, 10, 93] // First

%t (* or *) RealDigits[4/25 - 4*Sqrt[5]*Log[GoldenRatio]/125, 10, 93] // First (* _Jean-François Alcover_, Feb 13 2013, updated Oct 27 2014 *)

%Y Cf. A002163, A002390, A145433.

%K cons,easy,nonn

%O 0,2

%A _R. J. Mathar_, Feb 08 2009