Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Aug 27 2023 04:22:52
%S 1,1,2,3,2,2,2,5,3,2,2,6,2,2,4,7,2,3,2,6,4,2,2,10,3,2,4,6,2,4,2,9,4,2,
%T 4,9,2,2,4,10,2,4,2,6,6,2,2,14,3,3,4,6,2,4,4,10,4,2,2,12,2,2,6,11,4,4,
%U 2,6,4,4,2,15,2,2,6,6,4,4,2,14,5,2,2,12,4,2,4,10,2,6,4,6,4,2,4,18,2,3,6,9,2
%N Number of sublattices of index n of a centered rectangular lattice fixed by a reflection.
%C a(n) is the Dirichlet convolution of A000012 and A098178. - Domenico (domenicoo(AT)gmail.com), Oct 21 2009
%H Andrey Zabolotskiy, <a href="/A145390/b145390.txt">Table of n, a(n) for n = 1..10000</a>
%H Amihay Hanany, Domenico Orlando, and Susanne Reffert, <a href="https://doi.org/10.1007/JHEP06(2010)051">Sublattice counting and orbifolds</a>, High Energ. Phys., 2010 (2010), 51, <a href="https://arxiv.org/abs/1002.2981">arXiv.org:1002.2981 [hep-th]</a> (see Table 3).
%H John S. Rutherford, <a href="http://dx.doi.org/10.1107/S010876730804333X">Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type</a>, Acta Cryst. (2009). A65, 156-163. [See Table 1]. - From _N. J. A. Sloane_, Feb 23 2009
%F Dirichlet g.f.: (1-2^(-s) + 2*4^(-s))*zeta^2(s).
%F G.f.: Sum_n (1 + cos(n*Pi/2)) x^n / (1 - x^n). - Domenico (domenicoo(AT)gmail.com), Oct 21 2009
%F If 4|n then a(n) = d(n) - d(n/2) + 2*d(n/4); else if 2|n then a(n) = d(n) - d(n/2); else a(n) = d(n); where d(n) is the number of divisors of n. [Rutherford] - _Andrey Zabolotskiy_, Mar 10 2018
%F a(n) = Sum_{ m: m^2|n } A060594(n/m^2). - _Andrey Zabolotskiy_, May 07 2018
%F Sum_{k=1..n} a(k) ~ n*(log(n) - 1 + 2*gamma - log(2)/2), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Feb 02 2019
%F Multiplicative with a(2^e) = 2*e-1 and a(p^e) = e+1 for an odd prime p. - _Amiram Eldar_, Aug 27 2023
%p nmax := 100 :
%p L := [1,-1,0,2,seq(0,i=1..nmax)] :
%p MOBIUSi(%) :
%p MOBIUSi(%) ; # _R. J. Mathar_, Sep 25 2017
%t m = 101; Drop[ CoefficientList[ Series[ Sum[(1 + Cos[n*Pi/2])*x^n/(1 - x^n), {n, 1, m}], {x, 0, m}], x], 1] (* _Jean-François Alcover_, Sep 20 2011, after formula *)
%t f[p_, e_] := e+1; f[2, e_] := 2*e-1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 27 2023 *)
%o (PARI) t1=direuler(p=2,200,1/(1-X)^2)
%o t2=direuler(p=2,2,1-X+2*X^2,200)
%o t3=dirmul(t1,t2)
%Y Cf. A098178, A060594 (primitive sublattices only), A145391.
%K nonn,easy,mult
%O 1,3
%A _N. J. A. Sloane_, Feb 23 2009, Mar 13 2009
%E New name from _Andrey Zabolotskiy_, Mar 10 2018