login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composite numbers generated by the Euler polynomial x^2 + x + 41.
17

%I #21 Dec 21 2018 12:36:15

%S 1681,1763,2021,2491,3233,4331,5893,6683,6847,7181,7697,8051,8413,

%T 9353,10547,10961,12031,13847,14803,15047,15293,16043,16297,17071,

%U 18673,19223,19781,20633,21797,24221,25481,26123,26447,26773,27101,29111

%N Composite numbers generated by the Euler polynomial x^2 + x + 41.

%C The Euler polynomial x^2 + x + 41 gives primes for consecutive x from 0 to 39.

%C For numbers x for which x^2 + x + 41 is not prime see A007634.

%C Let P(x)=x^2 + x + 41. In view of identity P(x+P(x))=P(x)*P(x+1), all values of P(x+P(x)) are in the sequence. - _Vladimir Shevelev_, Jul 16 2012

%H Reinhard Zumkeller, <a href="/A145292/b145292.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) ~ n^2. [_Charles R Greathouse IV_, Dec 08 2011]

%t a = {}; Do[If[PrimeQ[x^2 + x + 41], null,AppendTo[a, x^2 + x + 41]], {x, 0, 500}]; a

%t Select[Table[x^2+x+41,{x,200}],CompositeQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Dec 21 2018 *)

%o (Haskell)

%o a145292 n = a145292_list !! (n-1)

%o a145292_list = filter ((== 0) . a010051) a202018_list

%o -- _Reinhard Zumkeller_, Dec 09 2011

%o (PARI) for(n=1,1e3,if(!isprime(t=n^2+n+41),print1(t", "))) \\ _Charles R Greathouse IV_, Dec 08 2011

%Y Cf. A005846, A007634, A145293, A145294, A145295.

%Y Intersection of A002808 and A202018; A010051.

%K nonn

%O 1,1

%A _Artur Jasinski_, Oct 06 2008