login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fecundity of n-th Fibonacci number.
1

%I #11 Aug 01 2015 12:09:49

%S 0,10,10,9,9,1,7,7,5,2,1,3,1,5,8,0,5,2,1,3,1,0,1,1,7,0,2,3,3,5,0,1,0,

%T 5,0,1,0,5,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0,5,2,1,3,5,1,0,0,0,0,0,0,0,0,

%U 0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0

%N Fecundity of n-th Fibonacci number.

%C Subset of A070562. After the 184th Fibonacci number 127127879743834334146972278486287885163, the fecundity is equal to zero.

%C The indices of Fibonacci numbers whose fecundity is not zero are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 31, 33, 35, 37, 39, 42, 43, 53, 54, 55, 56, 57, 58, 78, 80, 85, 87, 97, 125, 184}. - _Robert G. Wilson v_, Jun 27 2010

%e Fib(6)=8 -> 8+8=16 -> 16+1*6=22 -> 22+2*2=26 -> 26+2*6=38 -> 38+3*8=62 -> 62+6*2=74 -> 74+7*4=102 -> 7 steps to reach a zero digit.

%p P:=proc(i) local a,b,c,d,f,g,ok,k,w,n; d:=0; f:=1; print(d); print(10); for n from 0 by 1 to i do a:=d+f; g:=f; f:=a; d:=g; b:=1; c:=0; ok:=1; while ok=1 do k:=a; w:=1; while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w=0 then ok:=0; else c:=c+1; a:=a+w; fi; od; print(c); od; end: P(200);

%t f[n_] := Length@ FixedPointList[ # + Times @@ IntegerDigits@# &, n] - 2; Array[f@ Fibonacci@# &, 105, 0] (* _Robert G. Wilson v_, Jun 27 2010 *)

%Y Cf. A070562, A145280.

%K easy,nonn,base

%O 0,2

%A _Paolo P. Lava_ and _Giorgio Balzarotti_, Oct 06 2008