Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Sep 25 2017 07:14:51
%S 1008,421344,901254816,77507914176,33392993024160,14400272882673216,
%T 80771130598914068544,13408007679419735378304,
%U 19679603271468316601505696,8496755026505881957246582080,215817577673249401714063184832,93197366130882174446119601563776,1006205363432069396407530278283307584
%N a(n) = numerator of Atkin polynomials A_n(j) evaluated at j = 1728.
%H M. Kaneko and D. Zagier, <a href="http://www2.math.kyushu-u.ac.jp/~mkaneko/papers/atkin.pdf">Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials</a>, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
%F See Maple code for formula.
%e 1008, 421344, 901254816/5, 77507914176, 33392993024160, 14400272882673216, 80771130598914068544/13, ...
%p af:=proc(a,n) mul(a+i,i=0..n-1); end; A1728:=n->-12^(3*n+1)*af(-1/12,n)*af(7/12,n)/(2*n-1)!;
%Y Cf. A145295, A145093.
%K nonn,frac
%O 1,1
%A _N. J. A. Sloane_, Feb 28 2009