login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = denominator of constant lambda(n) involved in a recurrence for the Atkin polynomials A_k(j).
1

%I #4 Sep 25 2017 07:14:13

%S 1,1,1,1,5,5,1,2,6,3,11,11,13,91,35,20,68,51,57,19,1,11,253,46,50,325,

%T 117,63,203,29,31,248,88,187,85,15,111,703,247,26,82,287,301,473,165,

%U 345,1081,188,28,35,85,221,689,477,495,770,266,551,1711,59,61,1891,93,48,1040,715

%N a(n) = denominator of constant lambda(n) involved in a recurrence for the Atkin polynomials A_k(j).

%H M. Kaneko and D. Zagier, <a href="http://www2.math.kyushu-u.ac.jp/~mkaneko/papers/atkin.pdf">Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials</a>, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998

%F For formula see Maple code.

%e 720, 546, 374, 475, 2001/5, 2294/5, 410, 903/2, 2491/6, 1342/3, 4602/11, 4891/11, ...

%p lambda:=proc(n) if n=1 then 720 else 12*(6+(-1)^n/(n-1))*(6+(-1)^n/n); fi; end;

%Y Cf. A145226.

%K nonn,frac

%O 1,5

%A _N. J. A. Sloane_, Feb 28 2009