login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=7
11

%I #7 Nov 22 2012 12:24:19

%S 7,364,48229636,112186849649044142700364,

%T 1411971263214164889494039458947084336929208169473485667118006013929636

%N Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=7

%C General formula for continued cotangent recurrences type:

%C a(n+1)=a(n)3+3*a(n) and a(1)=k is following:

%C a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]

%C k=1 see A006267

%C k=2 see A006266

%C k=3 see A006268

%C k=4 see A006267(n+1)

%C k=5 see A006269

%C k=6 see A145180

%C k=7 see A145181

%C k=8 see A145182

%C k=9 see A145183

%C k=10 see A145184

%C k=11 see A145185

%C k=12 see A145186

%C k=13 see A145187

%C k=14 see A145188

%C k=15 see A145189

%F a(n+1)=a(n)^3 + 3*a(n) and a(1)=7

%F a(n)=Floor[((7+Sqrt[7^2+4])/2)^(3^(n-1))]

%t a = {}; k = 7; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a

%t or

%t Table[Floor[((7 + Sqrt[53])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*)

%Y A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189

%K nonn

%O 1,1

%A _Artur Jasinski_, Oct 03 2008