login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Zero followed by partial sums of A059100, starting at n=1.
1

%I #5 Jan 13 2015 09:32:03

%S 0,3,9,20,38,65,103,154,220,303,405,528,674,845,1043,1270,1528,1819,

%T 2145,2508,2910,3353,3839,4370,4948,5575,6253,6984,7770,8613,9515,

%U 10478,11504,12595,13753,14980,16278,17649,19095,20618,22220,23903,25669

%N Zero followed by partial sums of A059100, starting at n=1.

%F G.f.: x*(3-3*x+2*x^2)/(1-x)^4.

%F a(1) = 0; a(n) = sum_{j=1..n-1} A059100(j) = a(n-1) + (n-1)^2 + 2 for n > 1.

%e a(2) = a(1) + 1^2 + 2 = 0 + 1 + 2 = 3; a(3) = a(2) + 2^2 + 2 = 3 + 4 + 2 = 9.

%t lst={0};s=0;Do[s+=n^2+2;AppendTo[lst,s],{n,5!}];lst

%o (PARI) {a=-2; for(n=0, 42, print1(a=a+n^2+2, ","))}

%Y Cf. A059100 (n^2+2), A002522 (n^2 + 1), A145066 (partial sums of A002522, starting at n=1), A008865 (n^2 - 2), A145067 (zero followed by partial sums of A008865), A005563 ((n+1)^2 - 1), A051925 (zero followed by partial sums of A005563).

%K nonn,easy

%O 1,2

%A _Vladimir Joseph Stephan Orlovsky_, Sep 30 2008

%E Edited by _Klaus Brockhaus_, Oct 21 2008