login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) is the number of amenable quasi-idempotent order-decreasing partial one-one transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|).
1

%I #12 Feb 26 2020 09:05:47

%S 1,1,1,1,3,1,1,5,6,1,1,7,14,10,1,1,9,25,30,15,1,1,11,39,65,55,21,1,1,

%T 13,56,119,140,91,28,1,1,15,76,196,294,266,140,36,1,1,17,99,300,546,

%U 630,462,204,45,1,1,19,125,435,930,1302,1218,750,285,55,1

%N T(n,k) is the number of amenable quasi-idempotent order-decreasing partial one-one transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|).

%C T(n,k) is also the rank of the semigroup of order-decreasing partial one-one transformations (of an n-chain) of height <= k.

%C The matrix inverse starts:

%C 1;

%C -1,1;

%C 2,-3,1;

%C -8,13,-6,1;

%C 58,-95,46,-10,1;

%C -672,1101,-535,120,-15,1;

%C 11374,-18635,9056,-2035,260,-21,1; - _R. J. Mathar_, Mar 29 2013

%H A. Umar, <a href="https://www.emis.de/journals/PM/53f1/pm53f102.pdf">On the ranks of certain finite semigroups of order-decreasing transformations</a> Portugaliae Math. 53, (1996), 23-34.

%F T(n,k) = C(n,k)*((n-k)*(k+1)+1)/(n-k+1), (n>=k>=0).

%e T(3,2) = 6 because there are exactly 6 amenable quasi-idempotent order-decreasing partial one-one transformations (on a 3- chain) of height 2, namely: (1,2)->(1,2), (1,3)->(1,2), (1,3)->(1,3), (2,3)->(1,3), (2,3)->(2,1), (2,3)->(2,3).

%e 1;

%e 1, 1;

%e 1, 3, 1;

%e 1, 5, 6, 1;

%e 1, 7, 14, 10, 1;

%e 1, 9, 25, 30, 15, 1;

%e 1, 11, 39, 65, 55, 21, 1;

%e 1, 13, 56, 119, 140, 91, 28, 1;

%e 1, 15, 76, 196, 294, 266, 140, 36, 1;

%e 1, 17, 99, 300, 546, 630, 462, 204, 45, 1;

%e 1, 19, 125, 435, 930,1302,1218, 750, 285, 55, 1;

%o (PARI) T(n,k) = binomial(n,k)*((n-k)*(k+1)+1)/(n-k+1);

%o tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Apr 23 2018

%Y Row sums of T(n, k) is A005183.

%K nonn,tabl

%O 0,5

%A _Abdullahi Umar_, Sep 30 2008

%E More terms from _Jinyuan Wang_, Feb 26 2020