login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of unlabeled acyclic graphs covering n vertices.
18

%I #18 Aug 01 2024 12:07:10

%S 1,0,1,1,3,4,10,17,39,77,176,381,891,2057,4941,11915,29391,73058,

%T 184236,468330,1202349,3108760,8097518,21218776,55925742,148146312,

%U 394300662,1053929982,2828250002,7617271738,20584886435,55802753243

%N Number of unlabeled acyclic graphs covering n vertices.

%C a(n) is the number of forests with n unlabeled nodes without isolated vertices. This follows from the fact that for n>0 A005195(n-1) counts the forests with one or more isolated nodes.

%C The labeled version is A105784. The connected case is A000055. This is the covering case of A005195. - _Gus Wiseman_, Apr 29 2024

%H Andrew Howroyd, <a href="/A144958/b144958.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A005195(n) - A005195(n-1).

%e From _Gus Wiseman_, Apr 29 2024: (Start)

%e Edge-sets of non-isomorphic representatives of the a(0) = 1 through a(5) = 4 forests:

%e {} . {12} {13,23} {12,34} {12,35,45}

%e {13,24,34} {13,24,35,45}

%e {14,24,34} {14,25,35,45}

%e {15,25,35,45}

%e (End)

%t brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}]]];

%t cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}],And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[y]}],Min@@#==First[#]&];

%t Table[Length[Union[Union[brute/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[cyc[#]]==0&]]]],{n,0,5}] (* _Gus Wiseman_, Apr 29 2024 *)

%o (PARI)

%o EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}

%o TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}

%o seq(n)={my(t=TreeGf(n), v=EulerT(Vec(t - t^2/2 + subst(t,x,x^2)/2))); concat([1,0], vector(#v-1, i, v[i+1]-v[i]))} \\ _Andrew Howroyd_, Aug 01 2024

%Y The connected case is A000055.

%Y This is the covering case of A005195, labeled A001858.

%Y The labeled version is A105784.

%Y For triangles instead of cycles we have A372169, non-covering A006785.

%Y Unique cycle: A372191 (lab A372195), non-covering A236570 (lab A372193).

%Y A006125 counts simple graphs, unlabeled A000088.

%Y A006129 counts covering graphs, unlabeled A002494.

%Y Cf. A000272, A053530, A054548, A137917, A144959, A372174.

%K nonn

%O 0,5

%A _Washington Bomfim_, Sep 27 2008

%E Name changed and 1 prepended by _Gus Wiseman_, Apr 29 2024.