Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jul 05 2024 10:43:11
%S 7,1162,128191,14100226,1550897047,170584575322,18762752388751,
%T 2063732178187666,226991776848254887,24967031721129850282,
%U 2746146497547435276511,302051147698496750566306,33222880100337095127017527,3654214759889381967221362042
%N Numbers n such that there exists an integer k with (n+7)^3-n^3=k^2.
%H Colin Barker, <a href="/A144927/b144927.txt">Table of n, a(n) for n = 1..450</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-111,1).
%F a(n+2) = 110*a(n+1) - a(n) + 378.
%F G.f.: 7*x*(-1-55*x+2*x^2) / ( (x-1)*(x^2-110*x+1) ). - _R. J. Mathar_, Nov 27 2011
%F a(n) = 7*A144929(n). - _R. J. Mathar_, Nov 27 2011
%e a(1)=7 because 14^3-7^3=49^2.
%t Last /@ Table[n /. {ToRules[Reduce[n > 0 && k >= 0 && (n + 7)^3 - n^3 == k^2, n, Integers] /. C[1] -> c]} // Simplify, {c, 1, 14}] (* or *)
%t Rest@ CoefficientList[Series[7 x (-1 - 55 x + 2 x^2)/((x - 1) (x^2 - 110 x + 1)), {x, 0, 14}], x] (* _Michael De Vlieger_, Jul 14 2016 *)
%t LinearRecurrence[{111,-111,1},{7,1162,128191},20] (* _Harvey P. Dale_, Jul 05 2024 *)
%o (PARI) Vec(7*x*(-1-55*x+2*x^2)/((x-1)*(x^2-110*x+1)) + O(x^20)) \\ _Colin Barker_, Jul 14 2016
%Y Cf. A144928, A144930, A144929.
%K easy,nonn
%O 1,1
%A _Richard Choulet_, Sep 25 2008