login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Second column of triangle A134134 (S2'(2) = S1hat(2)).
3

%I #8 Apr 05 2016 00:42:16

%S 1,2,10,36,204,1104,7776,57600,505440,4803840,51442560,597784320,

%T 7609593600,104364288000,1541746483200,24329797632000,409042632499200,

%U 7290954768384000,137384159367168000,2727604332085248000,56913717580296192000,1244955414746824704000

%N Second column of triangle A134134 (S2'(2) = S1hat(2)).

%C Sum of the products of the factorials of the partition parts of n+2 into two parts. - _Wesley Ivan Hurt_, Mar 18 2016

%F a(n) = A134134(n+2,2), n>=0.

%F a(n) = Sum_{i=1..floor(n/2)+1} i! * (n-i+2)!. - _Wesley Ivan Hurt_, Mar 18 2016

%e a(2)=10; The partitions of (2)+2 = 4 into two parts are: (3,1) and (2,2). The sum of the products of the factorials of the partition parts is: 3!*1! + 2!*2! = 6 + 4 = 10. - _Wesley Ivan Hurt_, Mar 18 2016

%p A144895:=n->add(i!*(n-i+2)!, i=1..floor(n/2)+1): seq(A144895(n), n=0..30); # _Wesley Ivan Hurt_, Mar 18 2016

%t Table[Sum[i!*(n - i + 2)!, {i, Floor[n/2] + 1}], {n, 0, 20}] (* _Wesley Ivan Hurt_, Mar 18 2016 *)

%Y Cf. A000142 (factorials, first column). A144896 (third column).

%Y Cf. A134134.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Oct 09 2008