login
A144868
Shadow transform of C(n+6,7) = A000580(n+6).
2
1, 1, 1, 3, 2, 4, 1, 4, 3, 3, 7, 6, 7, 1, 5, 4, 7, 5, 7, 6, 1, 12, 7, 10, 4, 12, 3, 1, 7, 9, 7, 4, 15, 12, 1, 12, 7, 12, 16, 11, 7, 1, 7, 22, 10, 12, 7, 11, 1, 6, 16, 22, 7, 6, 16, 6, 16, 12, 7, 18, 7, 12, 4, 4, 20, 27, 7, 24, 16, 6, 7, 19, 7, 12, 9, 22, 4, 27, 7, 11, 3, 12, 7, 5, 17, 12, 15, 36, 7
OFFSET
1,4
LINKS
Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150; see Definition 7 for the shadow transform.
N. J. A. Sloane, Transforms.
MAPLE
a:= n-> add(`if`(modp(binomial(j+6, 7), n)=0, 1, 0), j=0..n-1):
seq(a(n), n=1..120);
CROSSREFS
7th column of A144871.
Cf. A007318.
Sequence in context: A121885 A187760 A122143 * A134029 A117623 A145690
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 23 2008
STATUS
approved