login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = number of distinct prime divisors (taken together) of numbers of the form 4x^2+1 for x<=10^n.
0

%I #12 Jun 30 2015 11:12:28

%S 9,87,836,8000,78124,766585,7556731,74771106,741554656,7366252759,

%T 73261462211,729280694469

%N a(n) = number of distinct prime divisors (taken together) of numbers of the form 4x^2+1 for x<=10^n.

%C Primes of the form 4x^2+1 see A121326(n) = A002496(n+1).

%H Bernhard Helmes, <a href="http://www.devalco.de/quadr_Sieb_4x%5E2+1.php#4a">Prime sieving on the polynomial f(n)=4n^2+1</a>.

%t d = 10; l = 0; p = 4; c = {}; a = {}; Do[k = p x^2 + 1; b = Divisors[k]; Do[If[PrimeQ[b[[n]]], AppendTo[a, b[[n]]]], {n, 1, Length[b]}]; If[x == d, a = Union[a]; l = Length[a]; d = 10 d; Print[l]; AppendTo[c, l]], {x, 1, 10000}]; c (*_Artur Jasinski_*)

%Y Cf. A002383, A121326, A143835, A143868, A144848, A144850, A144851.

%K nonn

%O 1,1

%A _Artur Jasinski_ & Bernhard Helmes (bhelmes(AT)gmx.de), Sep 22 2008

%E Fixed broken link, corrected and extended to agree with website. - _Ray Chandler_, Jun 30 2015