login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least number k such that all coefficients of k*B(n,x), the n-th Bernoulli polynomial, are integers.
28

%I #96 Jun 05 2024 10:02:24

%S 1,2,6,2,30,6,42,6,30,10,66,6,2730,210,30,6,510,30,3990,210,2310,330,

%T 690,30,2730,546,42,14,870,30,14322,462,39270,3570,210,6,1919190,

%U 51870,2730,210,94710,2310,99330,2310,4830,4830,9870,210,46410,6630,14586,858

%N Least number k such that all coefficients of k*B(n,x), the n-th Bernoulli polynomial, are integers.

%C The lcm of the terms in row n of A053383. It appears that the Bernoulli polynomial B(n,x) is irreducible for all even n.

%C This sequence appears in a paper of Bazsó & Mező, who use this sequence to give necessary and sufficient conditions for power sums to be integer polynomials. - _Istvan Mezo_, Mar 20 2016

%C In "The denominators of power sums of arithmetic progressions" Corollary 1, we give a simple way to compute a(n) without using Bernoulli polynomials. Namely, a(n) equals (product of the primes dividing n+1) times (product of the primes p <= (n+1)/(2+(n+1 mod 2)) not dividing n+1 such that the sum of the base-p digits of n+1 is at least p). - _Bernd C. Kellner_ and _Jonathan Sondow_, May 15 2017

%H Bernd C. Kellner, <a href="/A144845/b144845.txt">Table of n, a(n) for n = 0..10000</a> (n = 0..1000 from T. D. Noe)

%H András Bazsó and István Mező, <a href="http://dx.doi.org/10.1016/j.jnt.2015.01.019">On the coefficients of power sums of arithmetic progressions</a>, J. Number Th., 153 (2015), 117-123.

%H András Bazsó and István Mező, <a href="https://www.emis.de/journals/JIS/VOL21/Mezo/mezo25.html">Some Notes on Alternating Power Sums of Arithmetic Progressions</a>, J. Int. Seq., Vol. 21 (2018), Article 18.7.8.

%H Bernd C. Kellner, <a href="https://doi.org/10.1016/j.jnt.2017.03.020">On a product of certain primes</a>, J. Number Theory, 179 (2017), 126-141; arXiv:<a href="https://arxiv.org/abs/1705.04303">1705.04303</a> [math.NT], 2017.

%H Bernd C. Kellner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/Kellner/kell2.html">On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients</a>, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.; arXiv:<a href="https://arxiv.org/abs/2310.01325">2310.01325</a> [math.NT], 2023.

%H Bernd C. Kellner and Jonathan Sondow, <a href="https://doi.org/10.4169/amer.math.monthly.124.8.695">Power-Sum Denominators</a>, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:<a href="https://arxiv.org/abs/1705.03857">1705.03857</a> [math.NT], 2017.

%H Bernd C. Kellner and Jonathan Sondow, <a href="http://math.colgate.edu/~integers/s95/s95.pdf">The denominators of power sums of arithmetic progressions</a>, Integers 18 (2018), #A95, 17 pp.; arXiv:<a href="https://arxiv.org/abs/1705.05331">1705.05331</a> [math.NT], 2017.

%H Bernd C. Kellner and Jonathan Sondow, <a href="http://math.colgate.edu/~integers/v52/v52.pdf">On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits</a>, Integers 21 (2021), #A52, 21 pp.; arXiv:<a href="https://arxiv.org/abs/1902.10672">1902.10672</a> [math.NT], 2019.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BernoulliPolynomial.html">Bernoulli Polynomial</a>.

%F From _Bernd C. Kellner_, Oct 18 2023: (Start)

%F Let rad(n) = A007947(n) be the radical of n. Let (n)_m be the falling factorial. Let f^(m)(x) denote the m-th derivative of f(x).

%F a(n) = lcm(A195441(n-1), A027642(n)) = lcm(denom(B(n,x)-B_n), denom(B_n)) = denom(B(n,x)).

%F a(n) = lcm(A195441(n), rad(n+1)).

%F a(n) = lcm(a(n+1), rad(n+1)), if n >= 2 is even.

%F a(2n)/a(2n+1) = A286517(n), if n >= 1.

%F a(n) = A324369(n+1) * A324370(n+1) * A324371(n+1).

%F a(n) = A324370(n+1) * rad(n+1).

%F a(n) = rad(A064538(n)).

%F If n >= m >= 1, then denom(B^(m)(n,x)) = a(n-m)/gcd(a(n-m), (n)_m) = A324370(n-m+1)/gcd(A324370(n-m+1), (n)_{m-1}).

%F (See papers of Kellner and Kellner & Sondow.) (End)

%p seq(denom(bernoulli(i,x)),i=0..51); # _Peter Luschny_, Jun 16 2012

%t (* From _Bernd C. Kellner_, Oct 18 2023: (Start) *)

%t (* Denominator formula *)

%t Table[Denominator[Together[BernoulliB[n, x]]], {n, 0, 51}]

%t (* Product formula *)

%t SD[n_, p_] := If[n < 1 || p < 2, 0, Plus@@IntegerDigits[n, p]]; rad[n_] := Times @@ Select[Divisors[n], PrimeQ]; (* A324370 *) DD2[n_] := Times @@ Select[Prime[Range[PrimePi[(n+1)/(2+Mod[n+1, 2])]]], !Divisible[n, #] && SD[n, #] >= # &];

%t DB[n_] := DD2[n+1] rad[n+1]; Table[DB[n], {n, 0, 51}]

%t (* (End) *)

%o (Sage)

%o def A144845(n):

%o return mul(prime_divisors(n+1) + [p for p in (2..(n+2)//(2+n%2))

%o if is_prime(p) and not p.divides(n+1) and sum((n+1).digits(base=p)) >= p])

%o print([A144845(n) for n in (0..51)]) # _Peter Luschny_, Sep 12 2018

%o (PARI) a(n) = lcm(apply(x->denominator(x), Vec(bernpol(n)))); \\ _Michel Marcus_, Mar 03 2020

%Y Cf. A027642, A053383, A064538, A195441, A286515, A286516, A286517, A324369, A324370, A324371.

%K nonn

%O 0,2

%A _T. D. Noe_, Sep 22 2008