login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.
3

%I #33 Jul 20 2023 16:28:57

%S 1,3,-1,15,-5,3,35,-35,21,-5,315,-105,189,-45,35,693,-1155,693,-495,

%T 385,-63,3003,-3003,9009,-2145,5005,-819,231,6435,-15015,27027,-32175,

%U 25025,-12285,3465,-429,109395,-36465,153153,-109395,425425,-69615,58905,-7293,6435

%N Numerators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.

%C All even coefficients of t_n have to be 0, because t_n is defined to be point-symmetric with respect to the origin, with vanishing n-th derivative for x=1.

%C A sigmoidal transfer function sigma_n: R->[ -1,1] can be defined as sigma_n(x) = 1 if x>1, sigma_n(x) = t_n(x) if x in [ -1,1] and sigma_n(x) = -1 if x<-1.

%H Alois P. Heinz, <a href="/A144815/b144815.txt">Rows n = 0..140, flattened</a>

%H Alois P. Heinz, <a href="/A144815/a144815.gif">Animation of sigma_n(x) and their derivatives for n=0..15</a>

%F See program.

%e 1, 3/2, -1/2, 15/8, -5/4, 3/8, 35/16, -35/16, 21/16, -5/16, 315/128, -105/32, 189/64, -45/32, 35/128, 693/256, -1155/256, 693/128, -495/128, 385/256, -63/256 ... = A144815/A144816

%e As triangle:

%e 1;

%e 3/2, -1/2;

%e 15/8, -5/4, 3/8;

%e 35/16, -35/16, 21/16, -5/16;

%e 315/128, -105/32, 189/64, -45/32, 35/128;

%e ...

%p t:= proc(n) option remember; local f,i,x; f:= unapply(simplify(sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=1, seq((D@@i)(f)(1)=0, i=1..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); end: T:= (n,k)-> coeff(t(n)(x), x, 2*k+1): seq(seq(numer(T(n,k)), k=0..n), n=0..10);

%t row[n_] := Module[{f, a, eq}, f = Function[x, Sum[a[2*k+1]*x^(2*k+1), {k, 0, n}]]; eq = Table[Derivative[k][f][1] == If[k == 0, 1, 0], {k, 0, n}]; Table[a[2*k+1], {k, 0, n}] /. Solve[eq] // First]; Table[row[n] // Numerator, {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Feb 03 2014 *)

%t Flatten[Table[Numerator[CoefficientList[Hypergeometric2F1[1/2,1-n,3/2,x^2]*(2*n)!/(n!*(n-1)!*2^(2*n-1)),x^2]],{n,1,9}]] (* _Eugeniy Sokol_, Aug 20 2019 *)

%Y Denominators of T(n,k): A144816.

%Y Column k=0 gives A001803.

%Y Diagonal gives (-1)^n A001790(n).

%Y Cf. A144702, A144703.

%K frac,sign,tabl,look

%O 0,2

%A _Alois P. Heinz_, Sep 21 2008