login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 2*k^2 + 17 is a square.
2

%I #32 Jul 25 2021 13:57:24

%S 2,4,16,26,94,152,548,886,3194,5164,18616,30098,108502,175424,632396,

%T 1022446,3685874,5959252,21482848,34733066,125211214,202439144,

%U 729784436,1179901798,4253495402,6876971644,24791187976,40081928066,144493632454,233614596752

%N Numbers k such that 2*k^2 + 17 is a square.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,6,0,-1).

%F G.f.: 2*x*(1+x)*(1+x+x^2) / ( (x^2+2*x-1)*(x^2-2*x-1) ). - _R. J. Mathar_, Nov 27 2011

%F a(n) = 2*A077241(n-1). - _R. J. Mathar_, Nov 27 2011

%F a(n) = 6*a(n-2) - a(n-4). - _Colin Barker_, Oct 20 2014

%e a(1)=2 because 2*4 + 17 = 25 = 5^2.

%t Select[Range[6000000],IntegerQ[Sqrt[2#^2+17]]&] (* _Harvey P. Dale_, Aug 18 2012 *)

%t LinearRecurrence[{0, 6, 0, -1}, 2{1, 2, 8, 13}, 30] (* _Robert G. Wilson v_, Dec 02 2014 *)

%o (PARI) Vec(2*x*(1+x)*(1+x+x^2) / ((x^2+2*x-1)*(x^2-2*x-1)) + O(x^50)) \\ _Colin Barker_, Oct 20 2014

%Y Cf. A133301.

%K nonn,easy

%O 1,1

%A _Richard Choulet_, Sep 21 2008

%E Corrected by _R. J. Mathar_, Nov 27 2011

%E Editing and more terms from _Colin Barker_, Oct 20 2014