login
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=7.
5

%I #11 May 06 2015 06:59:04

%S 7,41,1639,2684681,7207509387079,51948191564824694742765161,

%T 2698614606855723567054656642857156538246857652590759,

%U 7282520796335071470236496456671241855257664867148949932302276253455702665493855273950765616767079605321

%N Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=7.

%C a(0)=3 is the smallest integer generating an increasing sequence of the form a(n)=a(n-1)^2-a(n-1)-1, cf. A144743.

%F a(n)=a(n-1)^2-a(n-1)-1 and a(0)=7.

%F a(n) ~ c^(2^n), where c = 6.3622623884585267364822329679498420997632627444610172910703030892754... . - _Vaclav Kotesovec_, May 06 2015

%t a = {}; k = 7; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a

%o (PARI) a(n, s=7)={for(i=1, n, s=s^2-s-1);s} \\ _M. F. Hasler_, Oct 06 2014

%Y Cf. A000058, A082732, A144743, A144744, A144745, A144746, A144748.

%K nonn

%O 0,1

%A _Artur Jasinski_, Sep 20 2008

%E Edited by _M. F. Hasler_, Oct 06 2014