login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=9.
5

%I #28 May 06 2015 07:02:19

%S 9,71,4969,24685991,609398126966089,371366077149776919833628989831,

%T 137912763257614063309949706968500684963726537144819872418729

%N Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=9.

%C The original version of this sequence had a(0)=5=A144743(1) and therefore was essentially the same as that sequence A144743.

%C The next term a(8) has 119 digits.

%F a(n) = a(n-1)^2-a(n-1)-1 and a(0)=9.

%F a(n) ~ c^(2^n), where c = 8.395688554881795978328174160925857176207363473280394010762212170489... . - _Vaclav Kotesovec_, May 06 2015

%t k = 9; a = {k}; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a

%t NestList[#^2 - # - 1 &, 9, 7] (* _Harvey P. Dale_, Feb 04 2011 *)

%o (PARI) a(n,s=9)=for(i=1,n,s=s^2-s-1);s \\ _M. F. Hasler_, Oct 06 2014

%Y Cf. A000058, A082732, A144743, A144744, A144746, A144747, A144748.

%K nonn

%O 0,1

%A _Artur Jasinski_, Sep 20 2008

%E New initial value a(0)=9 from _M. F. Hasler_, Oct 20 2014