login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.
14

%I #41 Dec 19 2022 03:43:28

%S 1,3,30,510,12240,379440,14418720,648842400,33739804800,1990648483200,

%T 131382799891200,9590944392057600,767275551364608000,

%U 66752972968720896000,6274779459059764224000,633752725365036186624000,68445294339423908155392000,7871208849033749437870080000

%N 7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.

%H G. C. Greubel, <a href="/A144739/b144739.txt">Table of n, a(n) for n = 0..335</a>

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>.

%F a(n) = Sum_{k=0..n} A132393(n,k)*3^k*7^(n-k).

%F G.f.: 1/(1-3*x/(1-7*x/(1-10*x/(1-14*x/(1-17*x/(1-21*x/(1-24*x/(1-... (continued fraction). - _Philippe Deléham_, Jan 08 2012

%F a(n) = (-4)^n*Sum_{k=0..n} (7/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - _Mircea Merca_, May 03 2012

%F From _Ilya Gutkovskiy_, Mar 23 2017: (Start)

%F E.g.f.: 1/(1 - 7*x)^(3/7).

%F a(n) ~ sqrt(2*Pi)*7^n*n^n/(exp(n)*n^(1/14)*Gamma(3/7)). (End)

%F a(n) = A114799(7*n-4). - _M. F. Hasler_, Feb 23 2018

%F D-finite with recurrence: a(n) +(-7*n+4)*a(n-1)=0. - _R. J. Mathar_, Feb 21 2020

%F Sum_{n>=0} 1/a(n) = 1 + (e/7^4)^(1/7)*(Gamma(3/7) - Gamma(3/7, 1/7)). - _Amiram Eldar_, Dec 19 2022

%e a(0)=1, a(1)=3, a(2)=3*10=30, a(3)=3*10*17=510, a(4)=3*10*17*24=12240, ...

%p a:= n-> product(7*j+3, j=0..n-1); seq(a(n), n=0..20); # _G. C. Greubel_, Aug 19 2019

%t Table[7^n*Pochhammer[3/7, n], {n,0,20}] (* _G. C. Greubel_, Aug 19 2019 *)

%o (Magma) [ 1 ] cat [ &*[ (7*k+3): k in [0..n] ]: n in [0..20] ]; // _Klaus Brockhaus_, Nov 10 2008

%o (PARI) a(n)=prod(i=1,n,7*i-4) \\ _Charles R Greathouse IV_, Jul 02 2013

%o (Sage) [product(7*k+3 for k in (0..n-1)) for n in (0..20)] # _G. C. Greubel_, Aug 19 2019

%o (GAP) List([0..20], n-> Product([0..n-1], k-> 7*k+3) ); # _G. C. Greubel_, Aug 19 2019

%Y Cf. A114799, A001710, A001147, A032031, A008545, A047056, A011781, A045754, A084947, A144827, A147585, A049209, A051188.

%K nonn

%O 0,2

%A _Philippe Deléham_, Sep 20 2008