login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of 2-Eulerian numbers.
9

%I #69 Aug 08 2023 14:23:35

%S 1,1,2,1,7,4,1,18,33,8,1,41,171,131,16,1,88,718,1208,473,32,1,183,

%T 2682,8422,7197,1611,64,1,374,9327,49780,78095,38454,5281,128,1,757,

%U 30973,264409,689155,621199,190783,16867,256

%N Triangle of 2-Eulerian numbers.

%C Let [n] denote the ordered set {1,2,...,n}. The symmetric group S_n consists of the injective mappings p:[n] -> [n]. Such a permutation p has an excedance at position i, 1 <= i < n, if p(i) > i. One well-known interpretation of the Eulerian numbers A(n,k) is that they count the permutations in the symmetric group S_n with k excedances. The triangle of Eulerian numbers is A008292 (but with an offset of 1 in the column numbering). We generalize this definition to restricted permutations as follows.

%C Let r be a nonnegative integer and let Permute(n,n-r) denote the set of injective maps p:[n-r] -> [n], which we think of as permutations of n numbers taken n-r at a time. Clearly, |Permute(n,n-r)| = n!/r!. We say that p has an excedance at position i, 1 <= i <= n-r, if p(i) > i. Then the r-Eulerian number, denoted by A(r;n,k), is defined as the number of permutations in Permute(n,n-r) having k excedances. Thus the current array of 2-Eulerian numbers gives the number of permutations in Permute(n,n-2) with k excedances. See the example section below for some numerical examples.

%C Clearly A(0;n,k) = A(n,k). The case r = 1 also produces the ordinary Eulerian numbers A(n,k). There is an obvious bijection from Permute(n,n) to Permute(n,n-1) that preserves the number of excedances of a permutation. Consequently, the 1-Eulerian numbers are equal to the 0-Eulerian numbers: A(1;n,k) = A(0;n,k) = A(n,k).

%C For other cases of r-Eulerian numbers see A144697 (r = 3), A144698 (r = 4) and A144699 (r = 5). There is also a concept of r-Stirling numbers of the first and second kinds - see A143491 and A143494. If we multiply the entries of the current array by a factor of 2 and then reverse the rows we obtain A120434.

%C An alternative interpretation of the current array due to [Strosser] involves the 2-excedance statistic of a permutation (see also [Foata & Schutzenberger, Chapitre 4, Section 3]). We define a permutation p in Permute(n,n-2) to have a 2-excedance at position i (1 <=i <= n-2) if p(i) >= i + 2.

%C Given a permutation p in Permute(n,n-2), define ~p to be the permutation in Permute(n,n-2) that takes i to n+1 - p(n-i-1). The map ~ is a bijection of Permute(n,n-2) with the property that if p has (resp. does not have) an excedance in position i then ~p does not have (resp. has) a 2-excedance at position n-i-1. Hence ~ gives a bijection between the set of permutations with k excedances and the set of permutations with (n-k) 2-excedances. Thus reading the rows of this array in reverse order gives a triangle whose entries count the permutations in Permute(n,n-2) with k 2-excedances.

%C Example: Represent a permutation p:[n-2] -> [n] in Permute(n,n-2) by its image vector (p(1),...,p(n-2)). In Permute(10,8) the permutation p = (1,2,4,7,10,6,5,8) does not have an excedance in the first two positions (i = 1 and 2) or in the final three positions (i = 6, 7 and 8). The permutation ~p = (3,6,5,1,4,7,9,10) has 2-excedances only in the first three positions and the final two positions.

%C From _Peter Bala_, Dec 27 2019: (Start)

%C This is the array A(1,1,3) in the notation of Hwang et al. (p. 25), where the authors remark that the r-Eulerian numbers were first studied by Shanlan Li (Duoji Bilei, Ch. 4), who gave the summation formulas

%C Sum_{i = 2..n+1} (i-1)*C(i,2) = C(n+3,4) + 2*C(n+2,4)

%C Sum_{i = 2..n+1} (i-1)^2*C(i,2) = C(n+4,5) + 7*C(n+3,5) + 4*C(n+2,5)

%C Sum_{i = 2..n+1} (i-1)^3*C(i,2) = C(n+5,6) + 18*C(n+4,6) + 33*C(n+3,6) + 8*C(n+2,6). (End)

%D J. Riordan. An introduction to combinatorial analysis. New York, J. Wiley, 1958.

%D R. Strosser. Séminaire de théorie combinatoire, I.R.M.A., Université de Strasbourg, 1969-1970.

%D Li, Shanlan (1867). Duoji bilei (Series summation by analogies), 4 scrolls. In Zeguxizhai suanxue (Mathematics from the Studio Devoted to the Imitation of the Ancient Chinese Tradition) (Jinling ed.), Volume 4.

%D Li, Shanlan (2019). Catégories analogues d’accumulations discrètes (Duoji bilei), traduit et commenté par Andrea Bréard. La Bibliothèque Chinoise. Paris: Les Belles Lettres.

%H G. C. Greubel, <a href="/A144696/b144696.txt">Rows n = 2..52 of the triangle, flattened</a>

%H J. F. Barbero G., J. Salas, and E. J. S. Villaseñor, <a href="http://arxiv.org/abs/1307.5624">Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications</a>, arXiv preprint arXiv:1307.5624 [math.CO], 2013-2015.

%H Mark Conger, <a href="https://arxiv.org/abs/math/0508112">A refinement of the Eulerian polynomials and the joint distribution of pi(1) and Des(pi) in S_n</a>, arXiv:math/0508112 [math.CO], 2005.

%H Ming-Jian Ding and Bao-Xuan Zhu, <a href="https://doi.org/10.1016/j.aam.2023.102591">Some results related to Hurwitz stability of combinatorial polynomials</a>, Advances in Applied Mathematics, Volume 152, (2024), 102591. See p. 9.

%H Sergi Elizalde, <a href="https://arxiv.org/abs/2002.00985">Descents on quasi-Stirling permutations</a>, arXiv:2002.00985 [math.CO], 2020.

%H D. Foata and M. Schutzenberger, <a href="https://arxiv.org/abs/math/0508232">Théorie Géométrique des Polynômes Eulériens</a>, Lecture Notes in Math., no.138, Springer Verlag 1970; arXiv:math/0508232 [math.CO], 2005.

%H Hsien-Kuei Hwang, Hua-Huai Chern, and Guan-Huei Duh, <a href="https://arxiv.org/abs/1807.01412">An asymptotic distribution theory for Eulerian recurrences with applications</a>, arXiv:1807.01412 [math.CO], 2018-2019.

%H Tanya Khovanova and Rich Wang, <a href="https://arxiv.org/abs/2302.11067">Ending States of a Special Variant of the Chip-Firing Algorithm</a>, arXiv:2302.11067 [math.CO], 2023.

%H L. Liu and Y. Wang, <a href="https://arxiv.org/abs/math/0509207">A unified approach to polynomial sequences with only real zeros</a>, arXiv:math/0509207 [math.CO], 2005-2006.

%H Shi-Mei Ma, <a href="http://arxiv.org/abs/1208.3104">Some combinatorial sequences associated with context-free grammars</a>, arXiv:1208.3104 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012

%H Carla D. Savage and Gopal Viswanathan, <a href="https://doi.org/10.37236/16">The 1/k-Eulerian polynomials</a>, Elec. J. of Comb., Vol. 19, Issue 1, #P9 (2012). - From _N. J. A. Sloane_, Feb 06 2013

%F T(n,k) = (1/2!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-1)*(j+2);

%F T(n,n-k) = (1/2!)*Sum_{j = 2..k} (-1)^(k-j)*binomial(n+1,k-j)*j^(n-1)*(j-1).

%F Recurrence relations:

%F T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) with boundary conditions T(n,0) = 1 for n >= 2, T(2,k) = 0 for k >= 1. Special cases: T(n,n-2) = 2^(n-2); T(n,n-3) = A066810(n-1).

%F E.g.f. (with suitable offsets): (1/2)*[(1 - x)/(1 - x*exp(t - t*x))]^2 = 1/2 + x*t + (x + 2*x^2)*t^2/2! + (x + 7*x^2 + 4*x^3)*t^3/3! + ... .

%F The row generating polynomials R_n(x) satisfy the recurrence R_(n+1)(x) = (n*x+1)*R_n(x) + x*(1-x)*d/dx(R_n(x)) with R_2(x) = 1. It follows that the polynomials R_n(x) for n >= 3 have only real zeros (apply Corollary 1.2. of [Liu and Wang]).

%F The (n+1)-th row generating polynomial = (1/2!)*Sum_{k = 1..n} (k+1)!*Stirling2(n,k) *x^(k-1)*(1-x)^(n-k).

%F For n >= 2,

%F (1/2)*(x*d/dx)^(n-1) (1/(1-x)^2) = x/(1-x)^(n+1) * Sum_{k = 0..n-2} T(n,k)*x^k,

%F (1/2)*(x*d/dx)^(n-1) (x^2/(1-x)^2) = 1/(1-x)^(n+1) * Sum_{k = 2..n} T(n,n-k)*x^k,

%F 1/(1-x)^(n+1)*Sum_{k = 0..n-2} T(n,k)*x^k = (1/2!) * Sum_{m = 0..inf} (m+1)^(n-1)*(m+2)*x^m,

%F 1/(1-x)^(n+1)*Sum_{k = 2..n} T(n,n-k)*x^k = (1/2!) * Sum_{m = 2..inf} m^(n-1)*(m-1)*x^m.

%F Worpitzky-type identities:

%F Sum_{k = 0..n-2} T(n,k)*binomial(x+k,n) = (1/2!)*x^(n-1)*(x - 1);

%F Sum_{k = 2..n} T(n,n-k)*binomial(x+k,n) = (1/2!)*(x + 1)^(n-1)*(x + 2).

%F Relation with Stirling numbers (Frobenius-type identities):

%F T(n+1,k-1) = (1/2!) * Sum_{j = 0..k} (-1)^(k-j)*(j+1)!* binomial(n-j,k-j)*Stirling2(n,j) for n,k >= 1;

%F T(n+1,k-1) = (1/2!) * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+1)!* binomial(n-j,k)*S(2;n+2,j+2) for n,k >= 1 and

%F T(n+2,k) = (1/2!) * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+2)!* binomial(n-j,k)*S(2;n+2,j+2) for n,k >= 0, where S(2;n,k) denotes the 2-Stirling numbers A143494(n,k).

%F The row polynomials of this array are related to the Eulerian polynomials. For example, 1/2*x*d/dx [x*(x + 4*x^2 + x^3)/(1-x)^4] = x^2*(1 + 7*x + 4*x^2)/(1-x)^5 and 1/2*x*d/dx [x*(x + 11*x^2 + 11*x^3 + x^4)/(1-x)^5] = x^2*(1 + 18*x + 33*x^2 + 8*x^3)/(1-x)^6.

%F Row sums A001710. Alternating row sums [1, -1, -2, 8, 16, -136, -272, 3968, 7936, ... ] are alternately (signed) tangent numbers and half tangent numbers - see A000182.

%F Sum_{k = 0..n-2} 2^k*T(n,k) = A069321(n-1). Sum_{k = 0..n-2} 2^(n-k)*T(n,k) = 4*A083410(n-1).

%F For n >=2, the shifted row polynomial t*R(n,t) = (1/2)*D^(n-1)(f(x,t)) evaluated at x = 0, where D is the operator (1-t)*(1+x)*d/dx and f(x,t) = (1+x*t/(t-1))^(-2). - _Peter Bala_, Apr 22 2012

%e The triangle begins

%e ===========================================

%e n\k|..0.....1.....2.....3.....4.....5.....6

%e ===========================================

%e 2..|..1

%e 3..|..1.....2

%e 4..|..1.....7.....4

%e 5..|..1....18....33.....8

%e 6..|..1....41...171...131....16

%e 7..|..1....88...718..1208...473....32

%e 8..|..1...183..2682..8422..7197..1611....64

%e ...

%e Row 4 = [1,7,4]: We represent a permutation p:[n-2] -> [n] in Permute(n,n-2) by its image vector (p(1),...,p(n-2)). Here n = 4. The permutation (1,2) has no excedances; 7 permutations have a single excedance, namely, (1,3), (1,4), (2,1), (3,1), (3,2), (4,1) and (4,2); the remaining 4 permutations, (2,3), (2,4), (3,4) and (4,3) each have two excedances.

%p with(combinat):

%p T:= (n,k) -> 1/2!*add((-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-1)*(j+2), j = 0..k):

%p for n from 2 to 10 do

%p seq(T(n,k),k = 0..n-2)

%p end do;

%t T[n_, k_]:= 1/2!*Sum[(-1)^(k-j)*Binomial[n+1, k-j]*(j+1)^(n-1)*(j+2), {j, 0, k}];

%t Table[T[n, k], {n,2,10}, {k,0,n-2}]//Flatten (* _Jean-François Alcover_, Oct 15 2019 *)

%o (Magma) m:=2; [(&+[(-1)^(k-j)*Binomial(n+1,k-j)*Binomial(j+m,m-1)*(j+1)^(n-m+1): j in [0..k]])/m: k in [0..n-m], n in [m..m+10]]; // _G. C. Greubel_, Jun 04 2022

%o (SageMath)

%o m=2 # A144696

%o def T(n,k): return (1/m)*sum( (-1)^(k-j)*binomial(n+1,k-j)*binomial(j+m,m-1)*(j+1)^(n-m+1) for j in (0..k) )

%o flatten([[T(n,k) for k in (0..n-m)] for n in (m..m+10)]) # _G. C. Greubel_, Jun 04 2022

%Y Cf. A008292, A120434, A143491, A143494, A143497, A144697, A144698, A144699.

%Y Cf. A000079 (right diagonal), A001710 (row sums).

%Y Cf. A000182 (related to alt. row sums).

%K easy,nonn,tabl

%O 2,3

%A _Peter Bala_, Sep 19 2008